
DoD UCR 2008, Change 3
Errata Sheet

Changes to UCR 2008, Change 2, made by Change 3 for Section 5.7, Near-Real-Time,
Text-Based Messaging Products

SECTION CORRECTION EFFECTIVE DATE

5.7.3.3 Defined XMPP System Under Test (SUT) as an XMPP
Server and Client.

Immediate

5.7.3.14.2.2;
item number 2

Removed the requirement for the server to provide a
temporary or permanent redirect address

Immediate

5.7.3.12.5;
item number 1

Removed the requirement to change/delete “the handle.” Immediate

5.7.3.1.4 Removed the requirement mandating that clients
reconnect after an unpredictable number of seconds
between 0 and 60.

Immediate

5.7.3.17 Removed the requirement for XEP-0191: Simple
Communications Blocking

Immediate

5.7.3.17 Removed the requirement for XEP-0138: Stream
Compression

Immediate

5.7.3.17 Defined support for the following capabilities as
Conditional requirements for XMPP Gateways:

- XEP-0045: Multi-User Chat
- XEP-0004: Data Forms
- XEP-0077: In-Band Registration
- XEP-0082: XMPP Date and Time Profiles
- XEP-0068: Field Standardization for Data

Forms

Immediate

Multiple The active revision of RFC 3920 and 3921 were replaced
with the published RFCs 6120, 6121, and 6122.

Immediate

http://xmpp.org/extensions/xep-0191.html�
http://xmpp.org/extensions/xep-0191.html�
http://xmpp.org/extensions/xep-0045.html�

THIS PAGE INTENTIONALLY LEFT BLANK

DoD UCR 2008, Change 3
Table of Contents

i

TABLE OF CONTENTS

SECTION PAGE

5.7 Near-Real-Time, Text-Based Messaging Products..1909
5.7.1 Introduction ...1909
5.7.2 Overview ...1909
5.7.3 XMPP Requirements ..1910

5.7.3.1 Introduction ...1910
5.7.3.2 Scope and Acknowledgement ...1910
5.7.3.3 XMPP Solution Framework..1911
5.7.3.4 Terminology..1912
5.7.3.5 Functional Summary ...1914

5.7.3.5.1 Client-to-Server Connections.......................1914
5.7.3.5.2 Server-to-Server Connections1915

5.7.3.6 XMPP Addressing ..1915
5.7.3.7 XML Streams ..1916

5.7.3.7.1 TCP Binding ..1916
5.7.3.7.2 Stream Negotiation Overview1919
5.7.3.7.3 Stream Features ..1919
5.7.3.7.4 Stream Restarts ..1920
5.7.3.7.5 Continuation and Completion of Stream

Negotiation ...1921
5.7.3.7.6 Directionality ...1921
5.7.3.7.7 Closing a Stream ..1922
5.7.3.7.8 Stream Attributes ...1923
5.7.3.7.9 Namespaces..1924
5.7.3.7.10 Stream Errors ...1925

5.7.3.8 TLS and STARTTLS Negotiation1926
5.7.3.8.1 STARTTLS Process.....................................1926
5.7.3.8.2 Initiation of STARTTLS Negotiation1927
5.7.3.8.3 STARTTLS Negotiation Fails1927
5.7.3.8.4 TLS Negotiation...1927
5.7.3.8.5 TLS Success ...1928
5.7.3.8.6 TLS Failure ..1928
5.7.3.8.7 Order of TLS and SASL Negotiation1928
5.7.3.8.8 STARTTLS Failure Case1929

5.7.3.9 Authentication and SASL Negotiation1929
5.7.3.9.1 Client-to-Server Streams1929
5.7.3.9.2 Server-to-Server Streams1931
5.7.3.9.3 SASL Failure ...1933

DoD UCR 2008, Change 3
Table of Contents

ii

5.7.3.9.4 SASL Errors ...1933
5.7.3.10 Resource Binding ..1934

5.7.3.10.1 Overview ..1934
5.7.3.10.2 Resource Binding Process............................1934
5.7.3.10.3 Error Cases Associated with Server-

Generated Resource Identifiers1935
5.7.3.11 XML Stanzas ..1935

5.7.3.11.1 Common Attributes1936
5.7.3.11.2 Basic Semantics ...1939
5.7.3.11.3 Stanza Errors ..1941
5.7.3.11.4 Server Rules for Processing XML Stanzas ..1941

5.7.3.12 Roster Management ..1943
5.7.3.12.1 Roster-Related Elements and Attributes1943
5.7.3.12.2 Roster-Related Methods...............................1945
5.7.3.12.3 Retrieving the Roster on Login1947
5.7.3.12.4 Adding a Roster Item1948
5.7.3.12.5 Updating a Roster Item1949
5.7.3.12.6 Deleting a Roster Item1950

5.7.3.13 Presence Subscription Management1951
5.7.3.13.1 Subscription Requests1951
5.7.3.13.2 Cancelling a Subscription1956
5.7.3.13.3 Unsubscribing ..1958

5.7.3.14 Exchanging Presence Information1959
5.7.3.14.1 Initial Presence ...1959
5.7.3.14.2 Presence Probes ...1960
5.7.3.14.3 Subsequent Presence Broadcasts1962
5.7.3.14.4 Unavailable Presence1963
5.7.3.14.5 Presence Syntax ...1965

5.7.3.15 Exchanging Messages ...1966
5.7.3.15.1 One-to-One Chat Sessions1966
5.7.3.15.2 Message Stanza Syntax1967

5.7.3.16 Conformance Requirements in RFC 6120 and
RFC 6121 ..1968

5.7.3.17 XMPP Extensions ...1969
5.7.3.17.1 Elevated/Clarified Requirements1970

5.7.3.18 XML Usage...1972
5.7.3.19 DiffServ Code Point (DSCP) Requirements1972

DoD UCR 2008, Change 3
Table of Contents

iii

LIST OF FIGURES

FIGURE PAGE

5.7.3-1 High-Level XMPP Solution Framework ..1911

LIST OF TABLES

TABLE PAGE

5.7.3-1 XMPP Addressing Examples ...1916
5.7.3-2 DoD XMPP Protocol Suite ...1969
5.7.3-3 Elevated/Clarified Requirements ...1970

THIS PAGE INTENTIONALLY LEFT BLANK

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1909

5.7 NEAR-REAL-TIME, TEXT-BASED MESSAGING PRODUCTS

5.7.1 Introduction

This section of the UCR defines functional requirements for Extensible Messaging and Presence
Protocol (XMPP) clients and servers. These products fall within the data products category as
shown in UCR, Figure 4.5.1-1, Overview of UC Product Categories within the DoD UC APL.
The principal objective for this section is to address the essential capabilities needed to enable
the following services:

• Exchange of presence
• One-to-one chat
• Multi-user chat

5.7.2 Overview

This section of the UCR addresses essential capabilities and features that enable the near-real-
time exchange of relatively brief text-based messages in support of applications such as
presence, one-to-one chat, and multi-user chat. The term “near-real-time” underscores the point
that XMPP applications and services are generally used to enable the immediate interchange of
information. The term “text-based” refers to the exchange of relatively brief text messages with
particular contacts or services. The terms “messaging” or “instant messaging” are umbrella
terms, which can refer to a wide variety of text-based applications, including, but not limited to
the following:

• Sending messages in the context of a two-party text conversation (i.e., a one-to-one
chat session)

• Sending messages in the context of a multiuser chat (i.e., text-based conferencing,

also known as group chat)

• Sending messages in the context of a notification service (including content
syndication, alerts, notifications, and other similar applications)

• Sending messages in the context of a structured request-response interaction (e.g., one

entity requests information and another entity responds with the result)

• Sending messages to convey that an error occurred in relation to a previously sent
message

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1910

5.7.3 XMPP Requirements

5.7.3.1 Introduction

In accordance with Joint Staff and DoD IT Standards Registry (DISR) mandates, this
specification stipulates the use of the XMPP. The XMPP is an open, XML-based protocol
specifically designed to enable the near-real-time exchange of text-based communication
including applications such as presence, one-to-one chat, and multi-user chat. The XMPP is
proven (i.e., has been widely deployed and rigorously tested), secure (i.e., offers inherent support
for channel encryption and strong authentication), and highly scalable.

5.7.3.2 Scope and Acknowledgement

The principal intent for this section of the UCR is to address required functionality to enable:

• Multivendor interoperability
• Essential Information Assurance requirements

Additionally, a key objective for this section of the UCR is to create a well-defined and
unambiguous set of requirements that vendors can “build to” and which will facilitate
compliance and certification testing.

This section of the UCR defines an XMPP specification that is based upon commercial
standards. This specification assumes that the reader is familiar with the general concepts and
requirements defined in RFC 6120 and RFC 6121 (i.e., the XMPP baseline standards). For that
reason, this specification does not attempt to cover all aspects exhaustively or all normative
requirements addressed in these baseline documents. Concerning RFC 6120 and RFC 6121,
compliant solutions are expected to implement all requirements defined as “MUST,” “SHALL,”
“REQUIRED,” “MUST NOT,” and “SHALL NOT.” It is also expected that vendors will
likewise implement requirements defined as “SHOULD” or “SHOULD NOT” except where
there may exist valid reasons in particular circumstances to ignore a particular requirement. To
better enable multivendor interoperability and to address specific Information Assurance)
requirements, some of the content defined as “SHOULD,” “RECOMMENDED,” “SHOULD
NOT,” “NOT RECOMMENDED,” “MAY,” or “OPTIONAL” in RFC 6120 and RFC 6121 has
been redefined by this specification to reflect requirement levels associated with the following
terminology: “MUST,” “SHALL,” “REQUIRED,” “MUST NOT,” or “SHALL NOT.” In the
event of a discrepancy between the commercial XMPP standards and this section of the UCR,
the explicit requirements defined in this section of the UCR take precedence. A significant
portion of the text of this specification was borrowed or derived from RFC 6120 and RFC 6121.
For the sake of traceability, individual requirements are linked to a reference source by a
bracketed section number and associated reference source identifier.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1911

In addition to the core functionality specified in RFC 6120 and RFC 6121, this section of the
UCR also defines a minimum XMPP feature set which will incorporate requirements from
XMPP Extension Protocol (XEP) series documents plus a few additional IETF RFCs. For
further detail, see Section 5.7.3.17, XMPP Extensions.

5.7.3.3 XMPP Solution Framework

The XMPP is implemented using a client-server design. Commonly, the XMPP network
consists of a number of interconnected servers. Each server operates as the “home” server for
some number of locally connected clients (see Figure 5.7.3-1, XMPP Requirements).

Figure 5.7.3-1. High-Level XMPP Solution Framework

• An XMPP client must connect to its “home” server in order to be granted access to

the network and subsequently to be permitted to exchange instant messaging (IM) and
presence information with other users/services. After the client successfully
negotiates and establishes a connection with its home server, the client then uses
XMPP to communicate with its server, other clients, and any other entities (e.g., a

DISN

XMPP
Client

XMPP
Clients

XMPP
Server

Regional
MAN

Local Enclave
(B/P/C/S)

XMPP Client-to-Server

XMPP Server-to-Server

Legend

DMZ

XMPP
Client Local Enclave

(B/P/C/S)

Data
Firewall

XMPP Server
(Enterprise-Wide

IM/Presence
Services)

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1912

multiuser chat service) on the network. More than one client can connect
concurrently to the same home server on behalf of the same local or user account.
[Section 2.5, RFC 6120]

• An XMPP server manages XML streams with locally hosted clients and delivers

XML stanzas to those clients over the negotiated streams. The server also manages
XML streams with peer servers and routes XML stanzas to those servers over the
negotiated streams. A server is responsible for the enforcement of security policies
(e.g., user authentication and channel encryption), storing a user’s roster, and
maintaining presence information for all of its hosted users. A server may also host
local services that use XMPP communication primitives (e.g., multiuser chat service).
[Section 2.5, RFC 6120]

For APL certification purposes, an XMPP System Under Test (SUT) shall consist of both an
XMPP server and XMPP client. The one exception is XMPP gateway implementations (see the
note below for further clarification).

NOTE: Proprietary client-to-server protocols are permitted within the context of a MILDEP
enclave. However, these proprietary implementations must be able to federate with native
XMPP servers by means of an XMPP server-to-server stream enabled through the use of an
XMPP gateway implementation. Likewise, an XMPP gateway must be able to federate with
other XMPP gateways by means of an XMPP server-to-server stream. The XMPP gateway
implementations are expected to comply with server-to-server stream-related requirements as
defined in Section 5.7. From an applications perspective, XMPP gateways must support
Presence and one-to-one chat. However, it is understood that the majority of XMPP Gateway
implementations will not be compliant with the following XMPP Extension: XEP-0045: Multi-
User Chat.

5.7.3.4 Terminology

• XML Stanza

. An XML stanza is a discrete XML fragment that is sent over the
transport provided by the negotiated XML stream. As defined in the XMPP baseline
specification, an XML stanza is “the basic unit of meaning in XMPP.” [Section 4.1,
RFC 6120]

• Initiating Entity and Receiving Entity

. When a client initiates a session with its home
server, the client is designated as the “initiating entity” and the server is labeled the
“receiving entity.” Likewise, when a server initiates a session with a peer server, the
server originating the connection is designated as the initiating entity and the targeted
peer server is labeled as the receiving entity. [Section 1.4, RFC 6120]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1913

• XML Stream

. An XML stream provides the essential transport needed for all client-
to-server and server-to-server communications. An XML stream acts as a logical
envelope (i.e., container) for all the XML elements and XML stanzas exchanged
between a client and server or between server peers. As discussed in RFC 6121,
Section 4.3, an XML stream is always unidirectional, which means that XML stanzas
can be sent in only one direction over the stream (either from the initiating entity to
the receiving entity or from the receiving entity to the initiating entity). To enable
communication between an initiating entity (i.e., a client or server) and a receiving
entity (i.e., a server), the initiating entity will negotiate an XML stream to the
receiving entity (the Initial Stream), and, in response, the receiving entity will
negotiate an XML stream to the initiating entity (the Response Stream). [Section 4.1,
RFC 6120]

• Contact

. A contact is an entity that has a subscription to a user’s presence or to which
a user has a presence subscription. In this specification, the term “contact” is also
used in a less strict sense to refer to a potential contact, an item in a user’s roster, or
the target of a particular message stanza or presence subscription request. [Section 3,
RFC 6121]

• Entity

. In the context of this specification, an entity typically refers to a client or
server implementation. However, in XMPP, an entity also could be a reference to a
gateway, a service, or a chat room.

• Originating Entity

. The entity (e.g., a client or server) that generates a stanza is
referred to as the originating entity.

• Mandatory-to-Negotiate Stream Features

. Mandatory-to-negotiate stream features
refer to a set of particular protocol interactions that are mandatory for the initiating
entity to complete before the receiving entity will accept XML stanzas from the
initiating entity (e.g., authentication and channel encryption). [Section 4.2.1, RFC
6120]

• Connected Resource

. After successfully binding a resource to the XML stream, the
client is referred to as a Connected Resource.

• Available Resource

. After a connected resource sends initial presence, it is referred
to as an Available Resource.

• Interested Resource

. If a connected resource or available resource requests the roster,
it is referred to as an Interested Resource.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1914

• User

. The term “user” commonly refers to the owner of an XMPP account. It is
worth noting that a user may not necessarily be a natural person (e.g., it could be an
automated process).

• Related Abbreviations
− C = client

:

− CC = contact’s client
− CS = contact’s server
− I = an initiating entity
− R = a receiving entity
− S = server
− UC = user’s client
− US = user’s server

5.7.3.5 Functional Summary

5.7.3.5.1 Client-to-Server Connections

As discussed previously, a client needs to connect to a server in order to be granted access to the
network. The process used by a client to open, secure, and close an XML stream is as follows
[Section 1.3, RFC 6120]:

1. Determine the hostname and port at which to connect.

2. Open a Transmission Control Protocol (TCP) connection.

3. Open an XML stream over TCP.

4. Negotiate Transport Layer Security (TLS) for channel encryption.

5. Authenticate using a Simple Authentication and Security Layer (SASL) mechanism.

6. Bind a resource to the stream (see Section 5.7.3.10, Resource Binding).

7. Exchange an unbounded number of XML stanzas with other entities on the network.

8. Close the XML stream.

9. Close the TCP connection.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1915

5.7.3.5.2 Server-to-Server Connections

For server-to-server communications (also known as “federation”), an XMPP server must
establish an XML stream with a peer server. This type of connection is also commonly
abbreviated as (s2s). The process for establishing and terminating server-to-server connections
is as follows [Section 1.3, RFC 6120]:

1. Determine the hostname and port at which to connect.

2. Open a TCP connection.

3. Open an XML stream over TCP.

4. Negotiate TLS for channel encryption.

5. Authenticate using a SASL mechanism.

6. Exchange an unbounded number of XML stanzas both directly for the servers and
indirectly on behalf of entities associated with each server (e.g., connected clients).

7. Close the XML stream.

8. Close the TCP connection.

5.7.3.6 XMPP Addressing

All the basic elements (i.e., XMPP clients, servers, and associated services) of XMPP are
addressable using a globally unique address. Generally, XMPP addresses are referred to as
Jabber IDs or JIDs. Typically, a JID is made up of three parts within the following structure:
[localpart@domainpart/resourcepart].

• Domainpart

. The domainpart of a JID is that portion after the “@” character (if any)
and before the “/” character (if any); it is the primary identifier and is the only
required element of a JID (a mere domainpart is a valid JID). Typically, a
domainpart identifies the “home” server to which clients connect for XML routing
and data management functionality. However, it is not necessary for an XMPP
domainpart to identify an entity that provides core XMPP server functionality (e.g., a
domainpart can identify an entity such as a multiuser chat service or a user directory).
[Section 2.2, RFC 6122]

• Localpart. The localpart of a JID is an optional identifier placed before the
domainpart and separated from the latter by the “@” character. Typically, a localpart

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1916

uniquely identifies the entity requesting and using network access provided by a
server (i.e., a local account). However, the localpart of a JID can also represent other
kinds of entities (e.g., a chat room associated with a multiuser chat service). The
entity represented by an XMPP localpart is addressed within the context of a specific
domain. [Section 2.3, RFC 6122]

• Resourcepart

. The resourcepart of a JID is an optional identifier placed after the
domainpart and separated from the latter by the “/” character. A resourcepart can
modify either a <localpart@domainpart> address or a mere <domainpart> address.
Typically a resourcepart uniquely identifies a specific connection (e.g., a device or
location) or object (e.g., an occupant in a multiuser chat room) belonging to the entity
associated with an XMPP localpart at a local domain. [Section 2.4, RFC 6122]

An address of the form [localpart@domainpart] is referred to as a bare JID. An address of the
form [localpart@domainpart/resourcepart] is referred to as a full JID. Table 5.7.3-1, XMPP
Addressing Examples, provides a few examples.

Table 5.7.3-1. XMPP Addressing Examples

XMPP
ENTITY FORMAT EXAMPLE

Server Consisting of a single domainpart identifier. “chat.dod.mil”
User Account Consisting of a localpart and domainpart

separated by the “@” character.
“john.smith@chat.dod.mil”

Specific
Client
Connection

Consisting of a localpart, domainpart and
resourcepart, where the localpart is separated
from the domainpart by the “@” character and
the domainpart is separated from the
resourcepart by the “/” character.

“john.smith@chat.dod.mil/XMPP
Desktop Client”

5.7.3.7 XML Streams

As mentioned previously, an XML stream provides the fundamental transport needed for all
client-to-server and server-to-server communications. The ability to establish and maintain an
XML stream is an essential capability of XMPP.

5.7.3.7.1 TCP Binding

[Required] As XMPP is defined in this specification, an initiating entity SHALL open a TCP
connection to the receiving entity before it negotiates XML streams with the receiving entity.
The parties then maintain that TCP connection for as long as the XML streams are in use.
[Section 3.1, RFC 6120]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1917

5.7.3.7.1.1 Hostname Resolution

Because XML streams are sent over TCP, the initiating entity needs to determine the IPv4 or
IPv6 address (and port) of the receiving entity’s “origin domain” before it can attempt to connect
to the XMPP network. [Section 3.2, RFC 6120]

1. [Required] When a server receives a stanza and the JID contained in the “to” attribute

does not match one of the configured hostnames of the server itself, the server SHALL
attempt to route the stanza to the remote domain. If no server-to-server stream exists
between the two domains, the sender’s server SHALL attempt to resolve the remote
hostname using a DNS service location record service (DNS SRV record) of “xmpp-
server” (for server-to-server connections). [Sections 10.4 of RFC 6120],

2. [Required] To discover the hostname of the XMPP service in a given domain, XMPP
clients SHALL use the same hostname resolution process. However, the DNS service
location record service identified in the DNS SRV query will be “xmpp-client” (for client-
to-server connections).

NOTE: It is not necessary to resolve the DNS domain name before each connection
attempt, because DNS resolution results can be cached temporarily in accordance with
time-to-live values. [Section 13.9.2, RFC 6120]

3. [Required] All server and client implementations SHALL support this hostname
resolution process as follows [Section 3.2.1, RFC 6120]:

a. The initiating entity SHALL construct a DNS SRV query (see RFC 2782) where
inputs are:

(1) A service of “xmpp-server” for server-to-server connections (or alternatively,

“xmpp-client” for client-to-server connections)

(2) A proto of “tcp”

(3) A name corresponding to the “origin domain” of the XMPP service to which

the initiating entity wishes to connect (e.g., “example.disn.mil”)

b. The result is a query such as “_xmpp-server._tcp.example.disn.mil.” (or alternatively,
“_xmpp-client._tcp.exmple.disn.mil.” for client-to-server connections).

c. If a response is received, it will contain one or more combinations of a port and

hostname, each of which is weighted and prioritized as described in RFC 2782.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1918

d. The initiating entity SHALL choose one of the returned hostnames to resolve
(following the rules in RFC 2782), which it SHALL do by using a DNS “A” or
“AAAA” lookup on the hostname; this will result in an IPv4 or IPv6 address.

e. The initiating entity SHALL use the IP address from the first successfully resolved

hostname (with the corresponding port number returned by the SRV lookup) as the
connection address for the receiving entity.

f. If the initiating entity fails to connect using that IP address, but the “A” or “AAAA”

lookup returned more than one IP address, then the initiating entity SHALL use the
next resolved IP address for that hostname as the connection address.

g. If the initiating entity fails to connect using all resolved IP addresses for a given

hostname, then it repeats the process of resolution and connection for the next
hostname returned by the SRV lookup.

h. If the initiating entity fails to connect using any hostname returned by the SRV

lookup, then it either SHALL abort the connection attempt or SHALL use the
fallback process described in the following section.

5.7.3.7.1.2 Standard, Default Port Values

The standard default XMPP port for client-to-server connections is 5222. The standard default
XMPP port for server-to-server connections is 5269.

5.7.3.7.1.3 Fallback Process

[Required] The fallback process SHALL be a normal “A” or “AAAA” address record
resolution to determine the IPv4 or IPv6 address of the origin domain, where the port used is the
“xmpp-client” port of 5222 for client-to-server connections or the “xmpp-server” port 5269 for
server-to-server connections. [Section 3.2.2, RFC 6120]

NOTE: If the initiating entity has been explicitly configured to associate a particular hostname
(and potentially a port value) with the origin domain of the receiving entity, the initiating entity
SHOULD use the configured name instead of performing the DNS SRV resolution process on
the origin name. Naturally, if the initiating entity has knowledge (e.g., through the configuration
process) of the IP address and port of the receiving entity, then there is no reason to perform
hostname resolution. [Section 3.2.3 RFC 6120]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1919

5.7.3.7.2 Stream Negotiation Overview

To establish an XML stream, the initiating entity (e.g., client or server) and the receiving entity
(e.g., a server) shall agree on a set of preconditions for connecting as a client or as a peer server.
The entities involved will begin the process of stream negotiation. In this process, the receiving
entity for a stream will impose certain conditions upon the connection. For example, when a
client attempts to establish an XML stream with its home server, it will first open a persistent
TCP connection and then begin the process of stream negotiation. Through an exchange of
XML elements with the client, the server will inform the client regarding what stream features it
supports. The server will specify whether a particular stream feature is required or optional. As
a result, the stream negotiation process permits the server to enforce important preconditions
(e.g., user authentication and channel encryption) upon the connection. Stream negotiation is a
multistage process. [Section 4 of RFC 6120]

5.7.3.7.3 Stream Features

1. [Required] The initiating entity SHALL initiate an XML stream by sending an initial
stream header to the receiving entity.

C: <stream:stream
 from='john@im.example1.dod.mil'
 to='im.example1.dod.mil'
 version='1.0'
 xml:lang='en'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>

2. [Required] In response, the receiving entity SHALL send a response stream header to the
initiating entity.

S: <stream:stream
 from='im.example1.dod.mil'
 id='t7AMCin9zjMNwQKDnplntZPIDEI='
 to='john@im.example1.dod.mil'
 version='1.0'
 xml:lang='en'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'

3. [Required] After the receiving entity has sent a response stream header to the initiating

entity, the receiving entity SHALL send a <features/> child element (prefixed by the
streams namespace prefix) to the initiating entity in order to announce any conditions for

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1920

continuation of the stream negotiation process. Each condition takes the form of a child
element of the <features/> element, qualified by a namespace that is different from the
streams namespace and the content namespace. The <features/> element can contain one
child, contain multiple children, or be empty. [Section 4.2.2, RFC 6120]

4. [Required] For stream features that are mandatory-to-negotiate, the definition of that
feature SHALL declare that the feature is always mandatory-to-negotiate (e.g., this is true
of resource binding for XMPP clients) or the receiving entity SHALL explicitly flag the
feature as mandatory-to-negotiate (e.g., this is done for TLS by including an empty
<required/> element in the advertisement for the STARTTLS feature). [Section 4.2.2, RFC
6120]

R: <stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
 <required/>
 </starttls>
 </stream:features>

5. [Required] If the <features/> element contains at least one mandatory feature, then the

initiating entity SHALL continue with the stream negotiation process. An empty
<features/> element indicates that the stream negotiation is complete and that the initiating
entity is cleared to send XML stanzas. [Section 4.2.2, RFC 6120]

R: <stream:features/>

NOTE: A <features/> element that contains only voluntary features indicates that the
stream negotiation is complete and that the initiating entity is cleared to send XML stanzas.
However, the initiating entity MAY negotiate further features if desired. [Section 4.2.2,
RFC 6120]

5.7.3.7.4 Stream Restarts

1. [Required] On successful negotiation of a feature that necessitates a stream restart, both
the initiating entity and the receiving entity SHALL consider the previous stream to be
replaced, but SHALL NOT terminate the underlying TCP connection; instead, the initiating
entity and the receiving entity SHALL reuse the existing connection. [Section 4.2.3, RFC
6120]

2. [Required] The initiating entity then SHALL send a new initial stream header to the
receiving entity. [Section 4.2.3, RFC 6120]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1921

3. [Required] When the receiving entity receives the new initial stream header, it SHALL
generate a new stream ID (instead of reusing the old stream ID) and SHALL then send a
new response stream header to the initiating entity. [Section 4.2.3, RFC 6120]

5.7.3.7.5 Continuation and Completion of Stream Negotiation

1. [Required] The receiving entity SHALL send an updated list of stream features to the
initiating entity after a stream restart. [Section 4.2.4, RFC 6120]

NOTE: The list of updated features MAY be empty if there are no further features to be
advertised. [Section 4.2.4, RFC 6120]

2. [Required] The receiving entity SHALL indicate completion of the stream negotiation
process by sending to the initiating entity either an empty <features/> element or a
<features/> element that contains only voluntary features. Once stream negotiation is
complete, the initiating entity is cleared to send XML stanzas over the stream for as long as
the stream is maintained by both parties. [Section 4.2.5, RFC 6120]

R: <stream:features/>

NOTE: A <features/> element that contains only voluntary features indicates that the
stream negotiation is complete and that the initiating entity is cleared to send XML stanzas,
but that the initiating entity MAY negotiate further features if desired. [Section 4.2.5, RFC
6120]

5.7.3.7.6 Directionality

An XML stream is always unidirectional, by which is meant that XML stanzas can be sent in
only one direction over the stream (either from the initiating entity to the receiving entity or from
the receiving entity to the initiating entity). [Section 4.3, RFC 6120]

1. [Required] For client-to-server sessions, a server SHALL allow a client to use “two
streams over a single TCP connection.”

2. [Required] For server-to-server sessions, the two server peers SHALL use two streams
over two TCP connections, where one TCP connection is used for the stream in which
stanzas are sent from the initiating entity to the receiving entity and the other TCP
connection is used for the stream in which stanzas are sent from the receiving entity to the
initiating entity. [Section 4.3, RFC 6120]

NOTE: This concept of directionality applies only to stanzas and explicitly does not apply
to other first-level children of the stream root, such as elements used for TLS negotiation,

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1922

SASL negotiation. In particular, during establishment of a server-to-server session, while
completing STARTTLS negotiation and SASL negotiation, the two servers would use one
TCP connection, but after the stream negotiation process is finished, that original TCP
connection would be used only for the initiating server to send XML stanzas to the
receiving server. In order for the receiving server to send XML stanzas to the initiating
server, the receiving server would need to reverse the roles and negotiate an XML stream
from the receiving server to the initiating server over a separate TCP connection. [Section
4.3, RFC 6120]

5.7.3.7.7 Closing a Stream

5.7.3.7.7.1 Closing a Stream without a Stream Error

1. [Required] Client and server implementations SHALL be capable of closing an XML
stream by sending a closing </stream> tag. [Section 4.4, RFC 6120]

S: </stream:stream>

NOTE: The entity that sends the closing stream tag SHOULD behave as follows [Section
4.4, RFC 6120]:

a. Wait for the other party to close also its stream before terminating the underlying
TCP connection (this gives the other party an opportunity to finish transmitting any
data in the opposite direction before the TCP connection is terminated).

b. Refrain from initiating the sending of further data over that stream but continue to

process data sent by the other entity (and, if necessary, react to such data).

c. Consider both streams to be void if the other party does not send its closing stream

tag within a configurable amount of time.

d. After receiving a reciprocal closing stream tag from the other party or waiting a

configurable amount of time with no response, the entity SHALL terminate the
underlying TCP connection.

2. [Required] After the entity that sent the first closing stream tag receives a reciprocal

closing stream tag from the other party, it SHALL terminate the underlying TCP
connection or connections. [Section 4.4, RFC 6120]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1923

5.7.3.7.8 Stream Attributes

5.7.3.7.8.1 Initial Streams

1. [Required] For client-to-server connections, it is assumed that the client knows the
associated XMPP account name of the form <localpart@domain>. The client SHALL
include the “from” attribute in the initial stream header it sends to the server and SHALL
set the value to the associated XMPP account name of the form <localpart@domain>.
[Section 4.6.1, RFC 6120]

2. [Required] For server-to-server connections, the initiating entity SHALL include the
“from” attribute in the initial stream header it sends to the receiving entity and SHALL set
its value to a hostname serviced by the initiating entity. [Section 4.6.1, RFC 6120]

3. [Required] For both client-to-server and server-to-server connections, the initiating entity
SHALL include the “to” attribute in the initial stream header that it sends to the receiving
entity and SHALL set its value to a hostname that the initiating entity knows or expects the
receiving entity to service. [Section 4.6.2, RFC 6120]

NOTE: For both client-to-server and server-to-server connections, the initiating entity
SHOULD include an “xml:lang” attribute in the initial stream headers that it generates.
[Section 4.6.4, RFC 6120]

4. [Required] For both client-to-server and server-to-server connections, the initiating entity
SHALL include a “version” attribute whose value is “1.0” (or higher) in the initial stream
headers it generates. [Section 4.6.5, RFC 6120]

Example:

C: <stream:stream
from='john@im.example1.dod.mil'
to='im.example1.dod.mil'
version='1.0'
xml:lang='en'
xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'>

5.7.3.7.8.2 Response Streams

1. [Required] For both client-to-server and server-to-server connections, the receiving entity
SHALL include the “from” attribute in the response stream header that it sends to the

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1924

initiating entity and SHALL set its value to a hostname serviced by the receiving entity.
[Section 4.6.1, RFC 6120]

2. [Required] For response stream headers in client-to-server communication, if the client
included a “from” attribute in the initial stream header then the server SHALL include a
“to” attribute in the response stream header and SHALL set its value to the bare JID
specified in the “from” attribute of the initial stream header. If the client did not include a
“from” attribute in the initial stream header then the server SHALL NOT include a “to”
attribute in the response stream header. [Section 4.6.2, RFC 6120]

3. [Required] For server-to-server connections, the receiving entity SHALL include the “to”
attribute in the response stream header that it sends to the initiating entity and SHALL set
its value to the hostname specified in the “from” attribute of the initial stream header.
[Section 4.6.2, RFC 6120]

4. [Required] For both client-to-server and server-to-server connections, the receiving entity
SHALL include an “id” attribute in the response stream header that it sends to the initiating
entity. The “id” attribute communicates a unique identifier for the stream, called a
STREAM ID. The stream “id” shall have the property of randomness. [Section 4.6.3, RFC
6120]

5. [Required] For both client-to-server and server-to-server connections, the receiving entity
SHALL include a “version” attribute where the value is 1.0 (or higher) in the response
stream headers it sends to the initiating entity. [Section 4.6.5, RFC 6120]

Example:

S: <stream:stream
from='im.example1.dod.mil'
id='t7AMCin9zjMNwQKDnplntZPIDEI='
to='john@im.example1.dod.mil'
version='1.0'
xml:lang='en'
xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'

5.7.3.7.9 Namespaces

5.7.3.7.9.1 Streams Namespace

[Required] Client and server implementations SHALL qualify the root <stream/> element
(“stream header”) by the namespace “http://etherx.jabber.org/streams” (the “streams

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1925

namespace”). If this rule is violated, the entity that receives the offending stream header SHALL
return a stream error to the sending entity, which SHALL be either <invalid-namespace/> or
<bad-format/>. [Section 4.7.1, RFC 6120]

5.7.3.7.9.2 Content Namespace

1. [Required] An entity (client or server) SHALL declare a content namespace for data sent
over the stream. The content namespace SHALL be the same for the initial stream and the
response stream so that both streams are qualified consistently. The content namespace
applies to all first-level child elements sent over the stream unless explicitly qualified by
another namespace. [Section 4.7.2, RFC 6120]

2. [Required] The XMPP defines two content namespaces: “jabber:client” and
“jabber:server.” Client implementations SHALL support the jabber:client content
namespace. Server implementations SHALL support both the jabber:client content
namespace (when the stream is used for communication between a client and a server) and
the jabber:server content namespace (when the stream is used for communication between
two servers). [Section 4.7.5, RFC 6120]

Example:

C: <stream:stream
from='john@im.example1.dod.mil'
to='im.example1.dod.mil'
version='1.0'
xml:lang='en'
xmlns='jabber:client'
xmlns:stream='http://etherx.jabber.org/streams'>

3. [Required] If an entity receives a first-level child element qualified by a content

namespace it does not support, it SHALL return an <invalid-namespace/> stream error.
[Section 4.7.5, RFC 6120]

5.7.3.7.10 Stream Errors

1. [Required] The error child SHALL be sent by an entity (client or server) if it perceives
that a stream-level error has occurred. [Section 4.8, RFC 6120]

2. [Required] Stream-level errors are unrecoverable. Therefore, if an error occurs at the
level of the stream, the entity (client or server) that detects the error SHALL send an
<error/> element with an appropriate child element that specifies the error condition and at
the same time send a closing </stream> tag. [Section 4.8.1.1, RFC 6120]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1926

S: <stream:error>
 <xml-not-well-formed
 xmlns='urn:ietf:params:xml:ns:xmpp-streams'/>
 </stream:error>
 </stream:stream>

3. [Required] The entity that generates the stream error then SHALL close the stream as

explained under Section 4.4 of RFC 6120). [Section 4.8.1.1, RFC 6120]

C: </stream:stream>

4. [Required] If the error is triggered by the initial stream header, the receiving entity

SHALL still send the opening <stream> tag, include the <error/> element as a child of the
stream element, and then send the closing </stream> tag (preferably all at the same time).
[Section 4.8.1.2, RFC 6120]

5.7.3.7.10.1 Stream Error Syntax and Defined Stream Error Conditions

For guidance and associated requirements related to stream error syntax and defined stream error
conditions, see Section 4.8, RFC 6120.

5.7.3.8 TLS and STARTTLS Negotiation

[Required] All XML streams (i.e., including both client-to-server and server-to-server
connections) SHALL be secured with the use of the TLS protocol.

NOTE: On extremely low-bandwidth, high-latency connections, the use of TLS is not
recommended.

5.7.3.8.1 STARTTLS Process

1. [Required] This specification mandates the use of the STARTTLS command to initiate
TLS negotiation. All client and server implementations SHALL support and use the
“STARTTLS” extension.

2. [Required] Immediately after the opening of the response stream, the receiving entity
SHALL initiate the process of stream negotiation. [Section 5.4.1, RFC 6120]

3. [Required] In the stream feature announcement provided by the receiving entity during
the initial stage of the stream negotiation process, the receiving entity SHALL advertize
ONLY the STARTTLS feature (qualified by the XML namespace:

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1927

“urn:ietf:params:xml:ns:xmpp-tls”) and SHALL also include an empty <required/> child
element. [Section 5.4.1, RFC 6120] See the following example:

R: <stream:features>
 <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'>
 <required/>
 </starttls>
 </stream:features>

5.7.3.8.2 Initiation of STARTTLS Negotiation

1. [Required] In order to begin the STARTTLS negotiation, the initiating entity SHALL
issue the STARTTLS command (i.e., a <starttls/> element qualified by the
'urn:ietf:params:xml:ns:xmpp-tls' namespace) to instruct the receiving entity that it wishes
to begin a STARTTLS negotiation to secure the stream. [Section 5.4.2.1, RFC 6120]

I: <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

2. [Required] The receiving entity SHALL reply with a <proceed/> element qualified by the

'urn:ietf:params:xml:ns:xmpp-tls' namespace. [Section 5.4.2.1, RFC 6120]

R: <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

5.7.3.8.3 STARTTLS Negotiation Fails

[Required] If there is a failure of STARTTLS negotiations, the receiving entity SHALL return a
<failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace and SHALL
close the XML stream. [Section 5.4.2.2, RFC 6120]

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>

R: </stream:stream>

NOTE: A STARTTLS failure is not triggered by TLS errors such as bad_certificate or
handshake failure, which are generated and handled during the TLS negotiation itself.

NOTE: If the failure case occurs, the initiating entity MAY attempt to reconnect.

5.7.3.8.4 TLS Negotiation

[Required] After the receiving entity has sent and the initiating entity has received the
<proceed/> element, the initiating and receiving entities SHALL proceed to TLS negotiation.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1928

The TLS negotiation and implementation SHALL be in accordance with the requirements
defined in Section 5.4, Information Assurance Requirements. Section 5.4 provides detailed
guidance and requirements regarding the use of TLS with DoD PKI certificates.

5.7.3.8.5 TLS Success

[Required] If the TLS negotiation is successful, then the initiating and receiving entities
SHALL proceed as follows. [Section 5.4.3.3, RFC 6120]

• The initiating entity SHALL send a new initial stream header to the receiving entity
over the encrypted connection. The initiating entity SHALL NOT send a closing
</stream> tag before sending the new initial stream header, since the receiving entity
and initiating entity MUST consider the original stream to be replaced upon success
of the TLS negotiation.

• The receiving entity SHALL respond with a new response stream header over the

encrypted connection. In this new response stream header, the receiving entity
SHALL generate a new stream ID instead of reusing the old stream ID.

• The receiving entity also SHALL send stream features to the initiating entity, which

SHALL NOT include the STARTTLS feature, but which SHALL advertise support
of SASL negotiation as described in Section 5.7.3.9, Authentication and SASL
Negotiation.

5.7.3.8.6 TLS Failure

[Required] If the TLS negotiation results in failure, the receiving entity SHALL terminate the
TCP connection. [Section 5.4.3.2, RFC 6120]

5.7.3.8.7 Order of TLS and SASL Negotiation

[Required] Client and server implementations SHALL complete STARTTLS negotiation
before proceeding to SASL protocol negotiation; this order of negotiation is necessary to help
safeguard authentication information sent during SASL negotiation, as well as to make it
possible to base the use of the SASL EXTERNAL mechanism on a certificate provided during
prior TLS negotiation (for entities who authenticate using a DoD PKI certificate). [Section 5.3.4,
RFC 6120]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1929

5.7.3.8.8 STARTTLS Failure Case

[Required] If the STARTTLS negotiation fails, the receiving entity SHALL return a <failure/>
element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace, terminate the XML
stream, and terminate the underlying TCP connection. [Section 5.4.2.2, RFC 6120]

5.7.3.9 Authentication and SASL Negotiation

The XMPP includes a method for adding authentication support to an XML stream by means of
an XMPP-specific profile of the SASL protocol. As described in RFC 4422, SASL is a
framework for providing authentication and data security services in connection-oriented
protocols via replaceable mechanisms. [Section 6 of RFC 6120 and RFC 4422]

1. [Required] All client and server implementations SHALL support SASL negotiations.

[Section 6.2, RFC 6120]

2. [Required] The entities involved in an XML stream SHALL consider SASL as
mandatory-to-negotiate. [Section 6.3.1, RFC 6120]

3. [Required] Anonymous login capability is prohibited. [Instant Messaging STIG, Version
1, Release 2]

NOTE: SASL negotiation follows successful STARTTLS negotiation. The SASL negotiation
occurs over the encrypted stream that has already been negotiated.

5.7.3.9.1 Client-to-Server Streams

1. [Required] During the prior TLS negotiation, the server SHALL authenticate using a DoD
PKI certificate. The client SHALL validate the certificate presented by the server (i.e.,
shall verify that the certificate is unexpired, unrevoked, and anchored to a trusted DoD CA
in accordance with the policies and requirements defined in Section 5.4).

2. [Required] The client SHALL authenticate using name and password using the SASL
PLAIN mechanism [RFC 4616] as defined below.

 NOTE: As defined by this specification, the SASL PLAIN mechanism SHALL only be
used when the underlying XML stream is protected using Transport Layer Security (TLS).

 NOTE: Client authentication using name and password is a minimum requirement. Client
authentication using a DoD PKI certificate is preferred. The client in this scenario would
comply with the behavior defined for the “initiating entity” in Section 5.7.3.9.2, Server-to-
Server Streams.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1930

3. [Required] After successful STARTTLS negotiation, the server SHALL offer the SASL
PLAIN mechanism to the client during SASL negotiation. The <mechanisms/> element
SHALL be qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace. The
<mechanisms/> element SHALL contain one <mechanism/> child element including the
appropriate value for the PLAIN mechanism. [Section 6.4.1, RFC 6120]

S: <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>PLAIN</mechanism>
 <required/>
 </mechanisms>
 </stream:features>

4. [Required] The client SHALL select the PLAIN authentication mechanism by sending an

<auth/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace and which
SHALL include the appropriate value for the PLAIN ‘mechanism’ attribute. See the
following example:

C: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 mechanism='PLAIN'>AGp1bGlldAByMG0zMG15cjBtMzA=</auth>

 As discussed in RFC 4616, the PLAIN SASL mechanism consists of a single message, a

string of [UTF-8] encoded [Unicode] characters, from the client to the server. The client
presents a NUL (U+0000) character, followed by the authentication identity (i.e., name),
followed by a NUL (U+0000) character, followed by the clear-text password. For
additional details, see RFC 4616. [Section 2, RFC 4616]

5. [Required] Upon receipt of the message, the server will verify the presented
authentication identity and password by performing a directory lookup to a directory
service linked to the XMPP server for authenticating the user. [Instant Messaging STIG,
Version 1, Release 2]

6. [Required] All users SHALL be linked to a directory service, which is linked to the user’s
home XMPP server. [Instant Messaging STIG, Version 1, Release 2]

7. [Required] The server SHALL report the success of the handshake by sending a
<success/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace
[Section 6.4.6. RFC 6120]:

 S: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1931

8. [Required] After successful SASL negotiation, the client and server SHALL restart the
stream. Upon receiving the <success/> element, the client SHALL initiate a new stream
over the existing TLS connection by sending a new initial stream header to the server. The
client SHALL NOT send a closing </stream> tag before sending the new initial stream
header, since the server and client MUST consider the original stream to be replaced upon
sending or receiving the <success/> element. [Section 6.4.6. RFC 6120]

9. [Required] Upon receiving the new initial stream header from the client, the server
SHALL respond by sending a new response stream header to the client (for which it
SHALL generate a new stream ID instead of re-using the old stream ID). [Section 6.4.6,
RFC 6120]

10. [Required] The server SHALL also send stream features, containing any further available
features or containing no features (via an empty <features/> element). [Section 6.4.6, RFC
6120]

S: <stream:features>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
 </stream:features>

5.7.3.9.2 Server-to-Server Streams

1. [Required] During the prior TLS negotiation, the initiating entity and the receiving entity
SHALL mutually authenticate using DoD PKI certificates.

2. [Required] After the successful mutual authentication of the receiving entity and the
initiating entity during the prior TLS negotiation, the receiving entity SHALL offer the
SASL EXTERNAL mechanism (as defined in Appendix A of RFC 4422) to the initiating
entity during SASL negotiation. [Section 6.3.4, RFC 6120]

3. [Required] The receiving entity SHALL include an empty <required/> element in its
advertisement of the SASL feature.

 NOTE: The SASL EXTERNAL mechanism allows the initiating entity to request that the
receiving entity use the credentials exchanged during the TLS Handshake process (See
RFC 4422, Appendix A and XEP 0178: Best Practices for Use of SASL EXTERNAL with
Certificates).

R: <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>EXTERNAL</mechanism>
 <required/>

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1932

 </mechanisms>
 </stream:features>

4. [Required] In response to the receiving entity offering the SASL EXTERNAL
mechanism, the initiating entity SHALL select the EXTERNAL authentication mechanism
by sending an <auth/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl'
namespace and which SHALL include the appropriate value for the EXTERNAL
‘mechanism’ attribute and which also includes an empty response of “=”. [Section 6.4,
RFC 6120 and Section 3, XEP-178]:

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 mechanism='EXTERNAL'/>=</auth>

NOTE: For the sake of backwards compatibility, the initiating entity MAY alternatively
include an authorization identity (base64-encoded as described in RFC 6120) as the XML
character data of the <auth/> element, which SHOULD be the same as the ‘from’ address
in the stream header it sent to the initiating entity as defined in XEP-0178.

I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'

mechanism='EXTERNAL'>Y29uZmVyZW5jZS5leGFtcGxlLm9yZwo=</auth>

5. [Required] The receiving entity SHALL report the success of the handshake by sending a

<success/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace [Section
6.4.6, RFC 6120]:

R: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

6. [Required] After successful SASL negotiation, the initiating entity and the receiving

entity SHALL restart the stream. Upon receiving the <success/> element, the initiating
entity SHALL initiate a new stream over the existing TLS connection by sending a new
initial stream header to the receiving entity. The initiating entity SHALL NOT send a
closing </stream> tag before sending the new initial stream header, since the receiving
entity and initiating entity MUST consider the original stream to be replaced upon sending
or receiving the <success/> element. [Section 6.4.6, RFC 6120]

I: <stream:stream
from='im.example.dod.mil'
to='chat.example2.dod.mil'
version='1.0'
xmlns='jabber:server'
xmlns:stream='http://etherx.jabber.org/streams'>

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1933

7. [Required] Upon receiving the new initial stream header from the initiating entity, the
receiving entity SHALL respond by sending a new response stream header to the initiating
entity (for which it SHALL generate a new stream ID instead of reusing the old stream ID).
[Section 6.3.2, and Section 6.4.6, RFC 6120]

R: <stream
from='im.example.dod.mil'
id='MbbV2FeojySpUIP6J91qaa+TWHM='
to='chat.example2.dod.mil'
version='1.0'
xmlns='jabber:server'
xmlns='http://etherx.jabber.org/streams'>

8. [Required] The receiving entity SHALL also send stream features, containing any further

available features or containing no features (via an empty <features/> element). [Section
6.4.6, RFC 6120]

5.7.3.9.3 SASL Failure

1. [Required] The receiving entity SHALL report failure of the handshake by sending a
<failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace.
[Section 6.4.5, RFC 6120]

2. [Required] The particular cause of failure SHALL be communicated in an appropriate
child element of the <failure/> element as defined under Section 6.4 (SASL Errors) of RFC
6120. [Section 6.4.5, RFC 6120]

R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
not-authorized/>

</failure>

3. [Required] The receiving entity SHALL allow a configurable number of retries (at least
two and no more than three per IM STIG policy).

4. [Required] If the initiating entity exceeds the maximum number of retries, the server
SHALL return a stream error (which SHALL be either <policy-violation/> or <not-
authorized/>). [Section 6.4.5, RFC 6120]

5.7.3.9.4 SASL Errors

For guidance and associated requirements related to SASL errors and defined conditions, see
Section 6.5, RFC 6120.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1934

5.7.3.10 Resource Binding

5.7.3.10.1 Overview

The baseline standard, RFC 6120, defines the concept of binding a resource (e.g., a particular
client implementation) to an XML stream. After a client authenticates with its home server, the
client will bind a specific resource to the stream so that the server can properly address the client.
In this process, the server will associate an XMPP resource with the client’s bare JID
(<localpart@domain>). As described in Section 5.7.3.6, XMPP Addressing, the resourcepart
identifier is used for routing purposes to ensure that XMPP traffic is routed to the appropriate
client connection. The combination of the resourcepart identifier and the client’s bare JID
constitute the client’s full JID of the form <localpart@domain/resourcepart>. [Section 7.1, RFC
6120]

After a client has successfully bound a resource to the XML stream, it is referred to as a
Connected Resource. A compliant server implementation SHALL allow a user to maintain
multiple connected resources simultaneously. [Section 7.1, RFC 6120]

5.7.3.10.2 Resource Binding Process

5.7.3.10.2.1 Mandatory-to-Negotiate

1. [Required] All client and server implementations SHALL support resource binding.
[Section 7.2, RFC 6120]

2. [Required] For client-to-server connections, both the client and server SHALL consider
resource binding as mandatory-to-negotiate. [Section 7.3.1, RFC 6120]

5.7.3.10.2.2 Advertising Support

[Required] Upon sending a new response stream header to the client after successful SASL
negotiation, the server SHALL include a <bind/> element qualified by the
'urn:ietf:params:xml:ns:xmpp-bind' namespace in the stream features it presents to the client.
[Section 7.4, RFC 6120]

S: <stream:features>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
 </stream:features>

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1935

5.7.3.10.2.1 Server-Generated Resource Identifier

1. [Required] A server implementation SHALL be able to generate an XMPP resourcepart
on behalf of a client. [Section 7.6, RFC 6120]

2. [Required] A resourcepart SHALL at a minimum, be unique among the connected
resources for a specific local account in the form of <localpart@domain>. Enforcement of
this policy is the responsibility of the server.

3. [Required] A client SHALL request a server-generated resourcepart by sending an
Info/Query (IQ) stanza of type “set” (see Section 5.7.3.12.2, Roster-Related Methods)
containing an empty <bind/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-bind'
namespace. [Section 7.6.1, RFC 6120]

C: <iq id='tn281v37' type='set'>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/>
 </iq>

4. [Required] Once the server has generated an XMPP resourcepart for the client, it SHALL
return an IQ stanza of type "result" to the client, which SHALL include a <jid/> child
element that specifies the full JID for the connected resource as determined by the server.
[Section 7.6.1, RFC 6120]

S: <iq id='tn281v37' type='result'>
 <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'>
 <jid>
 juliet@im.example.com/4db06f06-1ea4-11dc-aca3-000bcd821bfb
 </jid>
 </bind>
 </iq>

5.7.3.10.3 Error Cases Associated with Server-Generated Resource Identifiers

For guidance and associated requirements related to Server-Generated Resource Identifiers, see
Section 7.6.2, RFC 6120.

5.7.3.11 XML Stanzas

After a client and a server (or two servers) have completed stream negotiation, either party can
send XML stanzas. For the ‘jabber:client’ and ‘jabber:server’ content namespaces, three XML
stanza are defined: <message/>, <presence/>, and <iq/>. There are five common attributes

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1936

associated with these three stanza types. These common attributes and the basic semantics of
these three stanza types are defined below.

[Required] Client and server implementations SHALL support the syntax and semantics
associated with the message, presence, and IQ stanzas. [See the following sections: 5.7.3.11.1
through 5.7.3.11.3]

5.7.3.11.1 Common Attributes

5.7.3.11.1.1 ‘to’ Attribute

The ‘to’ attribute specifies the JID of the intended recipient of a stanza. [Section 8.1.1, RFC
6120]

<message to='robert@example1.dod.mil'>

<body>Hello</body>
</message>

1. [Required] The following rules SHALL be followed regarding the use of the ‘to’ attribute

in the context of XML streams qualified by the ‘jabber:client’ namespace (i.e., client-to-
server streams) [Section 8.1.1.1, RFC 6120]:

a. A stanza with a specific intended recipient SHALL possess a ‘to’ attribute whose
value is an XMPP address.

b. A stanza sent from a client to a server for direct processing by the server on behalf of

the client (e.g., presence sent to the server for broadcasting to other entities) SHALL
NOT possess a ‘to’ attribute.

2. [Required] The following rules SHALL be followed regarding the use of the ‘to’ attribute

in the context of XML streams qualified by the ‘jabber:server’ namespace (i.e., server-to-
server streams) [Section 8.1.1.2, RFC 6120]:

a. A stanza SHALL possess a ‘to’ attribute whose value is an XMPP address; if a server
receives a stanza that does not meet this restriction, it SHALL generate an <improper-
addressing/> stream error.

b. The domain identifier portion of the JID in the ‘to’ attribute SHALL match a

hostname serviced by the receiving server; if a server receives a stanza that does not
meet this restriction, it SHALL generate a <host-unknown/> or <host-gone/> stream
error.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1937

5.7.3.11.1.2 ‘from’ Attribute

The ‘from’ attribute specifies the JID of the sender. [Section 8.1.2, RFC 6120]

<message from='john@im.example1.dod.mil/office'

to='robert@example1.dod.mil'>
<body>Hello</body>

</message>

1. [Required] The following rules SHALL be followed regarding the use of the ‘from’

attribute in the context of XML streams qualified by the ‘jabber:client’ namespace (i.e.,
client-to-server streams) [Section 8.1.2.1, RFC 6120]:

a. When the server receives an XML stanza from a client, the server SHALL add a
‘from’ attribute to the stanza or override the ‘from’ attribute specified by the client,
where the value of the ‘from’ attribute is the full JID
(<localpart@domainpart/resource>) determined by the server for the connected
resource that generated the stanza or the bare JID (<localpart@domainpart>) in the
case of subscription-related presence stanzas.

b. When the server generates a stanza from the server itself for delivery to the client, the

stanza SHALL include a ‘from’ attribute whose value is the bare JID (i.e., <domain>)
of the server as agreed upon during stream negotiation (e.g., based on the ‘to’
attribute of the initial stream header).

c. When the server generates a stanza from the server for delivery to the client on behalf

of the account of the connected client (e.g., in the context of data storage services
provided by the server on behalf of the client), the stanza SHALL either (a) not
include a ‘from attribute or (b) include a 'from' attribute whose value is the account's
bare JID (<localpart@domainpart>).

d. A server SHALL NOT send to the client a stanza without a ‘from’ attribute if the

stanza was not generated by the server (e.g., if it was generated by another client or
another server).

e. When a client receives a stanza that does not include a ‘from’ attribute, it SHALL

assume that the stanza is from the user’s account on the server.

2. [Required] The following rules SHALL be followed regarding the use of the ‘from’
attribute in the context of XML streams qualified by the ‘jabber:server’ namespace (i.e.,
server-to-server streams) [Section 8.1.2.2, RFC 6120]:

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1938

a. A stanza SHALL possess a ‘from’ attribute whose value is an XMPP address; if a
server receives a stanza that does not meet this restriction, it SHALL generate an
<improper-addressing/> stream error.

b. The domain identifier portion of the JID contained in the ‘from’ attribute SHALL

match the hostname of the sending server (or any validated domain thereof) as
communicated in the SASL negotiation; if a server receives a stanza that does not
meet this restriction, it SHALL generate an <invalid-from/> stream error.

Enforcement of these rules helps to prevent certain denial of service attacks.

5.7.3.11.1.3 ‘id’ Attribute

As discussed in Section 8.1.3 of RFC 6120, the ‘id’ attribute is used by the entity that generates a
stanza (“the originating entity”) to track any response or error stanza that it might receive in
relation to the generated stanza from another entity (such as an intermediate server or the
intended recipient). It is up to the originating entity whether the value of the ‘id’ attribute will be
unique only within its current stream or unique globally.

1. [Required] For <iq/> stanzas, the originating entity SHALL include an ‘id’ attribute.

[Section 8.1.3, RFC 6120]

 NOTE: For <message/> and <presence/> stanzas, it is recommended for the originating
entity to include an ‘id’ attribute. [Section 8.1.3, RFC 6120]

2. [Required] If the generated stanza includes an ‘id’ attribute, then it is required for the
associated response or error stanza to also include an ‘id’ attribute, where the value of the
‘id’ attribute SHALL match that of the generated stanza. [Section 8.1.3, RFC 6120]

5.7.3.11.1.4 ‘type’ Attribute

As discussed in Section 8.1.4 of RFC 6120, the ‘type’ attribute specifies the purpose or context
of the message, presence, or IQ stanza. The particular allowable values for the ‘type’ attribute
vary depending on whether the stanza is a message, presence, or IQ stanza. The defined values
for message and presence stanzas are specific to instant messaging and presence applications and
therefore are defined in subsequent sections of this specification (e.g., 5.7.3.13, 5.7.3.14,
5.7.3.15, 5.7.3.17), whereas the values for IQ stanzas specify the role of an IQ stanza in a
structured request-response exchange and therefore are specified under Section 5.7.3.11.2.3, IQ
Semantics. The only ‘type’ value common to all three stanzas is “error”; see Section 5.7.3.11.3,
Stanza Errors. [Section 8.1.4, RFC 6120]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1939

5.7.3.11.1.5 ‘xml:lang’ Attribute

NOTE: A stanza SHOULD possess an ‘xml:lang’ attribute if the stanza contains XML character
data that is intended to be presented to a human user. The value of the ‘xml:lang’ attribute
specifies the default language of any such human-readable XML character data. [Section 8.1.5,
RFC 6120]

<presence from='robert@example1.dod.mil/office' xml:lang='en'>
<show>dnd</show>
<status>Hello</status>

</presence>

NOTE: If an outbound stanza generated by a client does not possess an ‘xml:lang’ attribute, the
client’s server SHOULD add an ‘xml:lang’ attribute whose value is that which is specified for
the stream. [Section 8.1.5, RFC 6120]

1. [Required] If an inbound stanza received by a client or server does not possess an

‘xml:lang’ attribute, an implementation SHALL assume that the default language is that
which is specified for the stream. [Section 8.1.5, RFC 6120]

2. [Required] A server SHALL NOT modify or delete the ‘xml:lang’ attribute of stanzas it
receives from other entities. [Section 8.1.5, RFC 6120]

5.7.3.11.2 Basic Semantics

5.7.3.11.2.1 Message Semantics

As discussed in Section 8.2.1 of RFC 6120, the <message/> stanza can be seen as a “push”
mechanism whereby one entity pushes information to another entity. For additional clarification
and requirements associated with the use of the <message/> stanza in the context of one-to-one
chat sessions and multi-user chat sessions, see Sections 5.7.3.15 and 5.7.3.17 respectively.

5.7.3.11.2.2 Presence Semantics

As discussed in Section 8.2.2 of RFC 6120, the <presence/> stanza can be seen as a specialized
broadcast or “publish-subscribe” mechanism, whereby multiple entities receive information (in
this case, network availability information) about an entity to which they have subscribed. For
additional clarification and requirements associated with the use of the <presence/> stanza to
enable the exchange of presence information, see Sections 5.7.3.13, Presence Subscription
Management, and 5.7.3.14, Exchanging Presence Information.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1940

5.7.3.11.2.3 IQ Semantics

As discussed in Section 8.2.3 of RFC 6120, the Info/Query (IQ) stanza provides a request-
response mechanism. The semantics of the IQ stanza enables an entity to make a request of, and
receive a response from, another entity. The data content of the request and response is defined
by the schema or other structural definition associated with the XML namespace that qualifies
the direct child element of the IQ element and the interaction is tracked by the requesting entity
through use of the ‘id’ attribute. [Section 8.2.3, RFC 6120]

1. [Required] When a client or server implementation generates or processes an IQ stanza,

the following rules apply [Section 8.2.3, RFC 6120]:

a. An IQ stanza SHALL include the ‘id’ attribute.

b. An IQ stanza SHALL include the ‘type’ attribute.

c. The value of the ‘type’ attribute for IQ stanzas SHALL be one of the following (if the

value is other than one of the following strings, the recipient or an intermediate server
SHALL return a stanza error of <bad-request/>):

(1) get – The stanza requests information (e.g., the stanza inquires about data

which is needed in order to complete further operations)

(2) set – The stanza provides data that is needed for an operation to be completed

(e.g., it sets new values, replaces existing values)

(3) result – The stanza is a response to a successful “get” or “set” request

(4) error – The stanza reports an error that has occurred regarding the processing

or delivery of a previously sent “get” or “set” request

d. An entity that receives an IQ request of type “get” or “set” SHALL reply with an IQ
response of type “result” or “error”. The response SHALL preserve the 'id' attribute
of the request.

e. An entity that receives a stanza of type “result” or “error” SHALL NOT respond to

the stanza by sending a further IQ response of type “result” or “error”.

f. An IQ stanza of type “get” or “set” SHALL contain exactly one child element, which

specifies the semantics of the particular request.

g. An IQ stanza of type “result” SHALL include zero or one child element.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1941

h. An IQ stanza of type “error” SHALL include an <error/> child.

5.7.3.11.3 Stanza Errors

[Required] Client and server implementations SHALL comply with the mandatory
requirements defined in Section 8.3 of RFC 6120.

5.7.3.11.4 Server Rules for Processing XML Stanzas

5.7.3.11.4.1 Rules for Processing XML Stanzas to Remote Domains

[Required] If the domainpart of the JID contained in the ‘to’ attribute does not match one of the
configured hostnames of the server itself, the server SHALL attempt to route the stanza to the
remote domain. [Section 10.4, RFC 6120]

NOTE: These rules apply only to client-to-server streams. As described under Section 5.7.3.9.2,
Server-to-Server Streams, a server SHALL NOT accept a stanza over a server-to-server stream if
the domainpart of the JID in the ‘to’ attribute does not match a hostname serviced by the
receiving server. [Section 10.4, RFC 6120]

5.7.3.11.4.1.1 Server-to-Server Stream Already Exists

[Required] If a server-to-server stream already exists between the two domains, the sender’s
server SHALL attempt to route the stanza to the authoritative server for the remote domain over
the existing stream. [Section 10.4.1, RFC 6120]

5.7.3.11.4.1.2 No Server-to-Server Stream Currently Exists

[Required] If no server-to-server stream exists between the two domains, the sender’s server
SHALL proceed as follows [Section 10.4.2, RFC 6120]:

• Resolve the hostname of the remote domain, as described in Section 5.7.3.7.1.1,
Hostname Resolution.

• Negotiate a server-to-server stream between the two domains (as defined in Section

5.7.3.8, TLS and STARTTLS Negotiation, and Section 5.7.3.9, Authentication and
SASL Negotiation.

• Route the stanza to the authoritative server for the remote domain over the newly-

established stream.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1942

5.7.3.11.4.1.3 Error Handling

1. [Required] If the routing of a stanza to the intended recipient’s server is unsuccessful, the
sender’s server SHALL return an error to the sender. If resolution of the remote domain is
unsuccessful, the stanza error SHALL be <remote-server-not-found/>. If the resolution
succeeds, but the XML streams cannot be negotiated, the stanza error SHALL be
<remote-server-timeout/>. [Section 10.4.3, RFC 6120]

2. [Required] If stream negotiation with the intended recipient’s server is successful but the
remote server cannot deliver the stanza to the recipient, the remote server SHALL return an
appropriate error to the sender by way of the sender’s server. [Section 10.4.3, RFC 6120]

5.7.3.11.4. 2 Rules for Processing XML Stanzas to Local Domain

[Required] If the hostname of the domainpart of the JID contained in the ‘to’ attribute matches
one of the configured hostnames of the server, the server SHALL first determine if the hostname
is serviced by the server itself or by a specialized local service. If the latter, the server SHALL
route the stanza to that service. If the former, the server SHALL proceed as follows [Section
10.5.3, RFC 6120]:

5.7.3.11.4.2.1 No Such User

[Required] If there is no local account associated with the <localpart@domainpart>, how the
stanza is processed depends on the stanza type. [Section 10.5.3.1, RFC 6120]

• For a message stanza, the server SHALL return a <service-unavailable/> stanza error
to the sender.

• For a presence stanza, the server SHALL ignore the stanza.

• For an IQ stanza, the server SHALL return a <service-unavailable/> stanza error to

the sender.

5.7.3.11.4.2.2 Bare JID

[Required] If the JID contained in the ‘to’ attribute is of the form <localpart@domainpart>,
how the stanza is processed depends on the stanza type. [Section 10.5.3.2, RFC 6120]

• For a message stanza, if at least one connected resource for the account exists, the
server SHALL deliver it to at least one of the connected resources. If there exists no
connected resource, the server SHALL either return a <service-unavailable/> stanza

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1943

error or store the message offline for delivery when the account next has a connected
resource.

• For a presence stanza, if at least one connected resource that has sent initial presence

exists (i.e., has a “presence session”), the server SHALL deliver it to such resources.
If no connected resource exists, the server SHALL ignore the stanza.

• For an IQ stanza, the server SHALL handle it directly on behalf of the intended

recipient.

5.7.3.11.4.2.3 Full JID

1. [Required] If the JID contained in the ‘to’ attribute is of the form
<localpart@domainpart/resource> and there is no connected resource that exactly matches
the full JID, the stanza SHALL be processed as if the JID were of the form
<localpart@domainpart>. [Section 10.5.4, RFC 6120]

2. [Required] If the JID contained in the ‘to’ attribute is of the form
<localpart@domainpart/resource> and there is a connected resource that exactly matches
the full JID, the server SHALL deliver the stanza to that connected resource. [Section
10.5.4, RFC 6120]

5.7.3.12 Roster Management

In XMPP, a user’s contact list is referred to as a roster. As defined in RFC 6121, a user’s roster
is stored by the user’s server on the user’s behalf so that the user can access roster information
from any device. This section addresses the protocol mechanics that permit a client to retrieve a
roster from its home server and to add, delete, and modify items within the roster.

5.7.3.12.1 Roster-Related Elements and Attributes

1. [Required] Client and server implementations SHALL use IQ stanzas containing a
<query/> child element qualified by the ‘jabber:iq:roster’ namespace to manage elements
in a roster. [Section 2.1, RFC 6121]

 NOTE: As discussed in Section 2.1.1 of RFC 6121, the ‘ver’ attribute is a string that
identifies a particular version of the roster information. The ‘ver’ attribute is only
generated by the server. An implementation treats the ‘ver’ attribute of the <query/>
element qualified by the ‘jabber:iq:roster’ namespace as an identifier of the particular
version of roster information being sent or received. Inclusion of the ‘ver’ attribute is
recommended. [Section 2.1.1, RFC 6121]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1944

2. [Required] Client and server implementations SHALL support the ‘subscription’ attribute
and the allowable subscription-related values for this attribute. The state of the presence
subscription in relation to a roster item is captured in the ‘subscription’ attribute of the
<item/> element. The allowable subscription-related values for this attribute are [Section
2.1.2.5, RFC 6121]:

a. “none” – the user does not have a subscription to the contact’s presence, and the
contact does not have a subscription to the user’s presence; this is the default value,
so if the subscription attribute is not included, then the state is to be understood as
“none”

b. “to” – the user has a subscription to the contact’s presence, but the contact does not

have a subscription to the user’s presence

c. “from – the contact has a subscription to the user’s presence, but the user does not

have a subscription to the contact’s presence

d. “both” – both the user and the contact have subscriptions to each other’s presence

(also called a “mutual subscription”)

3. [Required] In a roster result, the client SHALL ignore values of the ‘subscription’
attribute other than “none”, “to”, “from”, or “both”. [Section 2.1.2.5, RFC 6121]

4. [Required] In a roster push, the client SHALL ignore values of the ‘subscription’ attribute
other than “none”, “to”, “from”, “both”, or “remove”. [Section 2.1.2.5, RFC 6121]

5. [Required] In a roster set, the value of the ‘subscription’ can have a value of “remove”,
which indicates that the item is to be removed from the roster; the server SHALL ignore all
values of the ‘subscription’ attribute other than “remove”. [Section 2.1.2.5, RFC 6121]

6. [Required] Client implementations SHALL support the ‘name’ attribute, which is used to
specify the “handle” to be associated with the JID, as determined by the user (not the
contact). It is optional for a client to include the ‘name’ attribute when adding or updating
a roster item. [Section 2.1.2.4, RFC 6121]

7. [Required] Client and server implementations SHALL support the ‘ask’ attribute, which
is used to specify presence subscriptions sub-state. [Section 2.1.2.2, RFC 6121]

8. [Required] A value of “subscribe” in the ‘ask’ attribute is used to signal a “Pending Out”
sub-state as described under Section 3.1.2 of RFC 6121. A server SHALL include the
‘ask’ attribute to inform the client of “Pending Out” sub-state. [Section 2.1.2.2, RFC 6121]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1945

9. [Required] Client and server implementations SHALL support the <group/> child element
which is used to specify a category or “bucket” into which the roster item is to be grouped by
a client. It is optional for a client to include the <group/> element when adding or updating a
roster item. If a roster set (Roster Set) includes no <group/> element, then the item is to be
interpreted as being affiliated with no group. [Section 2.1.2.6, RFC 6121]

 NOTE: An <item/> element MAY contain more than one <group/> element, which means
that roster groups are not exclusive. [Section 2.1.2.6, RFC 6121]

5.7.3.12.2 Roster-Related Methods

1. [Required] A client implementation SHALL have the ability to generate a Roster Get. A
Roster Get is a client's request for the server to return the roster; syntactically it is an IQ
stanza of type “get” sent from client to server and containing a <query/> element qualified
by the ‘jabber:iq:roster’ namespace, where the <query/> element SHALL NOT contain any
<item/> child elements. Likewise, a compliant server implementation SHALL be able to
process this request. The expected outcome of sending a roster get is for the server to
return a roster result. [Section 2.1.3, RFC 6121]

C: <iq from='john.smith@chat.dod.mil/desktop client'
 id='bv1bs71f'
 type='get'>
 <query xmlns='jabber:iq:roster'/>
 </iq>

2. [Required] A server implementation SHALL be able to process a Roster Get.

3. [Required] A server implementation SHALL have the ability to generate a Roster Result.
A Roster Result is the server's response to a roster get; syntactically it is an IQ stanza of
type “result” sent from server to client and containing a <query/> element qualified by the
‘jabber:iq:roster’ namespace. The <query/> element in a roster result contains one <item/>
element for each contact and therefore can contain more than one <item/> element. The
ability to generate this response is required for server implementations. Likewise, a
compliant client implementation SHALL be able to process this response. [Section 2.1.4,
RFC 6121]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1946

S: <iq id='bv1bs71f'
to='robert.jones@chat.dod.mil/desktop client’
type='result'>

<query xmlns='jabber:iq:roster' ver='ver7'>
<item jid='mike@example2.dod.mil'/>
<item jid='bob@example1.dod.mil'/>

</query>
</iq>

4. [Required] A client implementation SHALL be able to process a Roster Result.

5. [Required] A client implementation SHALL have the ability to generate a Roster Set.
A Roster Set is a client's request for the server to modify (i.e., create, update, or delete) a
roster item; syntactically it is an IQ stanza of type “set” sent from client to server and
containing a <query/> element qualified by the ‘jabber:iq:roster’ namespace. [Section
2.1.5, RFC 6121]

 The following rules apply to roster sets:

a. The <query/> element SHALL contain one and only one <item/> element.

b. The server SHALL ignore any value of the ‘subscription’ attribute other than

“remove”.

 C: <iq from='robert@example2.dod.mil'

id='rs1'
type='set'>

<query xmlns='jabber:iq:roster'>
<item jid='bob@chat.dod.mil'/>

</query>
</iq>

6. [Required] A server implementation SHALL be able to process a Roster Set.

7. [Required] A server implementation SHALL have the ability to generate a Roster Push.
A Roster Push is a newly created, updated, or deleted roster item that is sent from the
server to the client; syntactically it is an IQ stanza of type “set” sent from server to client
and containing a <query/> element qualified by the ‘jabber:iq:roster’ namespace. [Section
2.1.6, RFC 6121]

 The following rules apply to roster pushes:

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1947

a. The <query/> element in a roster push SHALL contain one and only one <item/>
element.

b. A receiving client SHALL ignore the stanza unless it has no ‘from’ attribute (i.e.,

implicitly from the user’s bare JID) or it has a ‘from’ attribute whose value matches
the user's bare JID <user@domain>.

S: <iq id='a78b4q6ha463'

to='john@example1.dod.mil/desktop client'
type='set'>

<query xmlns='jabber:iq:roster'>
<item jid='robert@example2.dod.mil'/>

</query>
</iq>

8. [Required] A client implementation SHALL be able to process a Roster Push.

9. [Required] As mandated by the semantics of the IQ stanza as defined in [RFC 6120] each
resource that receives a roster push SHALL reply with an IQ stanza of type ‘result’ (or
‘error’).

C: <iq from='john@example1.dod.mil/desktop client'
id='a78b4q6ha463'
type='result'/>

5.7.3.12.3 Retrieving the Roster on Login

1. [Required] Upon authenticating with a server and binding a resource (thus becoming a
connected resource), a client SHALL request the roster before sending initial presence. A
client requests the roster by sending a roster get over its stream to the server. [Section 2.2,
RFC 6121]

 NOTE: Because receiving the roster is not necessarily desirable for all resources, e.g., a
connection with limited bandwidth, the client’s request for the roster in bandwidth-limited
environments is not mandatory. [Section 2.2, RFC 6121]

 NOTE: If a connected resource or available resource requests the roster, it is referred to as
an interested resource. [Section 2.2, RFC 6121]

2. [Required] The server SHALL process the roster get and SHALL return a roster result
containing a <query/> element qualified by the ‘jabber:iq:roster’ namespace. The <query/>

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1948

element in a roster result SHALL contain one <item/> element for each contact and therefore
can contain more than one <item/> element. [Section 2.1.3 and Section 2.2, RFC 6121]

C: <iq from='john@example1.dod.mil'
id='hu2bac18'
type='get'>

<query xmlns='jabber:iq:roster'/>
</iq>

S: <iq id='hu2bac18'

to='john@example1.dod.mil/desktop client'
type='result'>

<query xmlns='jabber:iq:roster' ver='ver11'>
<item jid='robert@example2.dod.mil'

name='Robert'
subscription='both'>

<group>Friends</group>
</item>
<item jid='mike@example2.dod.mil'

name='Mike'
subscription='from'/>

<item jid='bob@example1.dod.mil'
name='Bob'
subscription='both'/>

</query>
</iq>

3. [Required] If the server cannot process the roster get, it SHALL return an appropriate

stanza error as described in RFC 6120.

5.7.3.12.4 Adding a Roster Item

1. [Required] A client SHALL support the ability to add an item to the roster by sending a
roster set containing a new item. [Section 2.3.1, RFC 6121]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1949

C: <iq from='john@example1.dod.mil/desktop client'
id='ph1xaz53'
type='set'>

<query xmlns='jabber:iq:roster'>
<item jid='robert@example2.dod.mil'

name='Robert'>
<group>Friends</group>

</item>
</query>

</iq>

2. [Required] If the server can successfully process the roster set for the new item (i.e., if no

error occurs), it SHALL create the roster item in persistent storage. The server SHALL
then return an IQ stanza of type “result” to the connected resource that sent the roster set.
[Section 2.3.2, RFC 6121]

3. [Required] The server SHALL also send a roster push containing the new roster item to
all of the user's interested resources, including the resource that generated the roster set.
[Section 2.3.2, RFC 6121]

4. [Required] If the server cannot successfully process the roster set, it SHALL return a
stanza error. For additional details, see Section 2.3.3 of RFC 6121.

5.7.3.12.5 Updating a Roster Item

1. [Required] A client SHALL support the ability to update a roster item by sending a roster
set to the server. Because a roster item is atomic, the item SHALL be updated exactly as
provided in the roster set. [Section 2.4.1, RFC 6121]

 NOTE: There are several reasons why a client might update a roster item [Section 2.4.1,
RFC 6121]:

a. Adding a group
b. Deleting a group

2. [Required] As with adding a roster item, if the roster item can be successfully processed,
then the server SHALL update the roster information in persistent storage, send a roster
push to the entire user’s interested resources, and send an IQ result to the initiating
resource. [Section 2.4.2, RFC 6121]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1950

5.7.3.12.6 Deleting a Roster Item

1. [Required] A client SHALL support the ability to delete a roster item by sending a roster
set and specifying the value of the ‘subscription’ attribute to “remove”. [Section 2.5.1,
RFC 6121]

C: <iq from='john@example1.dod.mil/desktop client'
id='hm4hs97y'
type='set'>

<query xmlns='jabber:iq:roster'>
<item jid='robert@example2.dod.mil'

subscription='remove'/>
</query>

</iq>

2. [Required] As with adding a roster item, if the server can successfully process the roster

set then it SHALL update the roster information in persistent storage, send a roster push to
all of the user’s interested resources (with the ‘subscription’ attribute set to a value of
‘remove’), and send an IQ result to the initiating resource. [Section 2.5.2, RFC 6121]

3. [Required] The user’s server SHALL generate one or more subscription-related presence
stanzas, as per the following use cases [Section 2.5.2, RFC 6121]:

a. If the user has a presence subscription to the contact, then the user’s server SHALL
send a presence stanza of type “unsubscribe” to the contact (to unsubscribe from the
contact's presence).

b. If the contact has a presence subscription to the user, then the user’s server SHALL

send a presence stanza of type “unsubscribed” to the contact (to cancel the contact's
subscription to the user), or both.

c. If the presence subscription is mutual, then the user’s server SHALL send both a

presence stanza of type “unsubscribe” and a presence stanza of type “unsubscribed”
to the contact.

S: <presence from='john@example1.dod.mil'

id='lm3ba81g'
to='robert@example2.dod.mil'
type='unsubscribe'/>

4. [Required] If the value of the ‘jid’ attribute specifies an item that is not in the roster, then

the server SHALL return an <item-not-found/> stanza error. [Section 2.5.3, RFC 6121]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1951

5.7.3.13 Presence Subscription Management

As discussed in RFC 2778, presence technology allows a user to subscribe to another user’s
availability status and to be notified when that state changes. Before a particular user is
permitted to receive information/updates regarding another user’s presence, that exchange
SHALL first be authorized using a basic subscription request and approval process. When an
entity receives a presence subscription request, the entity can either accept or deny the request.
An entity that has a subscription to a user's presence or to which a user has a presence
subscription is called a “contact”. In XMPP, a subscription lasts across presence sessions;
indeed, it lasts until the contact unsubscribes or the user cancels the previously-granted
subscription. In XMPP, presence subscription management is accomplished through the use of
presence stanzas with specially defined attributes (“subscribe”, “unsubscribe”, “subscribed”, and
“unsubscribed”).

5.7.3.13.1 Subscription Requests

A Subscription Request is a request from a user for authorization to permanently subscribe to a
contact’s presence information; syntactically it is a presence stanza whose ‘type’ attribute has a
value of “subscribe”.

5.7.3.13.1.1 Rules for Client Generation of Outbound Subscription Requests

1. [Required] A client implementation SHALL be capable of generating a subscription
request by sending a presence stanza of type “subscribe”. [Section 3.1.1, RFC 6121]

UC: <presence id='xk3h1v69'
to='john@example1.dod.mil'
type='subscribe'/>

2. [Required] When the client sends a presence subscription request to a potential instant

messaging and presence contact, the value of the ‘to’ attribute SHALL be a bare JID
<contact@domain> rather a full JID <contact@domain/resource>. [Section 3.1.1,
RFC 6121]

 NOTE: For tracking purposes, a client SHOULD include an ‘id’ attribute in a presence
subscription request.

5.7.3.13.1.2 Rules for Server Processing of Outbound Subscription Requests

1. [Required] Upon receiving the outbound presence subscription request, the user’s server
SHALL comply with the following rules for Server Processing of Outbound Subscription
Requests as defined below [Section 3.1.2, RFC 6121]:

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1952

a. Before processing the request, the user’s server SHALL check the syntax of the JID
contained in the ‘to’ attribute. If the JID is of the form
<localpart@domain/resourcepart> instead of <localpart@domain>, the user’s server
SHALL treat it as if the request had been directed to the contact’s bare JID and
modify the ‘to’ address accordingly.

b. If the potential contact is hosted on the same server as the user, then the server

SHALL adhere to the Rules for Server Processing of Inbound Subscription Requests
(see below) and SHALL deliver it to the local contact.

c. If the potential contact is hosted on a remote server, the user’s server SHALL then

route the stanza to that remote domain in accordance with the Server Rules for
Processing XML Stanzas (e.g., see Section 5.7.3.11.4.1, Rules for Processing XML
Stanzas to Remote Domains).

2. [Required] When a server processes or generates an outbound presence stanza of type

“subscribe”, “subscribed”, “unsubscribe”, or “unsubscribed”, the server SHALL stamp the
outgoing presence stanza with the bare JID <localpart@domain> of the sending entity.
Enforcement of this rule simplifies the presence subscription model and helps to prevent
presence leaks. [Section 3.1.2, RFC 6121]

3. [Required] If the presence subscription request cannot be locally delivered or remotely
routed (e.g., because the request is malformed, the local contact does not exist, the remote
server does not exist, an attempt to contact the remote server times out, or any other error
determined or experienced by the user’s server), then the user’s server SHALL return an
appropriate error stanza to the user. [Section 3.1.2, RFC 6121]

4. [Required] After locally delivering or remotely routing the presence subscription request,
the user’s server SHALL then send a roster push to all of the user’s interested resources,
containing the potential contact with a subscription state of “none” and with notation that
the subscription is pending (via an ‘ask’ attribute whose value is “subscribe”). [Section
3.1.2, RFC 6121]:

US: <iq id='b89c5r7ib574'
to='john.smith@chat.dod.mil/desktop client'
type='set'>

<query xmlns='jabber:iq:roster'>
<item ask='subscribe'

jid=‘robert.jones@example2.dod.mil/desktop client’
subscription='none'/>

</query>
</iq>

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1953

 NOTE: If a remote contact does not approve or deny the subscription request within a

configurable amount of time, the user’s server SHOULD resend the subscription request to
the contact based on an implementation-specific algorithm (e.g., whenever a new resource
becomes available for the user, or after a certain amount of time has elapsed); this helps to
recover from transient, silent errors that might have occurred when the original
subscription request was routed to the remote domain. When doing so, it is recommended
for the server to include an ‘id’ attribute so that it can track responses to the resent
subscription request. [Section 3.1.2, RFC 6121]

5.7.3.13.1.3 Rules for Server Processing of Inbound Subscription Requests

1. [Required] Before processing the inbound presence subscription request, the contact’s
server SHALL check the syntax of the JID contained in the ‘to’ attribute. If the JID is of
the form <contact@domain/resource> instead of <contact@domain>, the contact’s server
SHALL treat it as if the request had been directed to the contact’s bare JID and modify the
‘to’ address accordingly. [Section 3.1.3, RFC 6121]

2. [Required] When processing the inbound presence subscription request, the user’s server
SHALL comply with the following rules for Server Processing of Inbound Subscription
Requests as defined below [Section 3.1.3, RFC 6121]:

a. Above all, the contact’s server SHALL NOT automatically approve subscription
requests on the contact’s behalf (unless the contact has configured its account to
automatically approve subscription requests). Instead, the contact’s server SHALL
deliver that request to the contact’s available resource(s) for approval or denial by the
contact.

b. If the contact exists and the user already has a subscription to the contact’s presence,

then the contact’s server SHALL auto-reply on behalf of the contact by sending a
presence stanza of type “subscribed” from the contact’s bare JID to the user’s bare
JID.

c. If the contact does not exist, then the contact’s server SHALL automatically return a

presence stanza of type “unsubscribed” to the user.

d. Otherwise, if there is at least one available resource associated with the contact when

the subscription request is received by the contact’s server, then the contact’s server
SHALL broadcast that subscription request to all of the contact’s available resources.

e. Otherwise, if the contact exists, the user does not already have a subscription to the

contact’s presence, and the contact has no available resources when the subscription

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1954

request is received by the contact’s server, then the contact’s server SHALL keep a
record of the complete presence stanza comprising the subscription request, including
any extended content contained therein, and deliver the request when the contact next
has an available resource. The contact’s server SHALL continue to deliver the
subscription request whenever the contact creates an available resource, until the
contact either approves or denies the request.

5.7.3.13.1.4 Rules for Client Processing of Inbound Subscription Requests

1. [Required] When the contact’s client receives a subscription request from the user, it
SHALL present the request to the contact for approval (unless the contact has explicitly
configured the client to automatically approve or deny some or all subscription requests).
[Section 3.1.4, RFC 6121]

2. [Required] A client implementation SHALL be capable of generating a subscription
approval by sending a presence stanza of type “subscribed”.

CC: <presence id='h4v1c4kj'
to='robert@example2.dod.mil'
type='subscribed'/>

3. [Required] A client implementation SHALL be capable of denying a subscription request

by sending a presence stanza of type “unsubscribed”. [Section 3.1.4, RFC 6121]

CC: <presence id='h4v1c4kj'
to='robert@example2.dod.mil'
type='unsubscribed'/>

 NOTE: If the subscription request is approved by the contact, the contact’s client

SHOULD send a subscription request to the user automatically. This assumes that the
desired end state is a mutual subscription. [Section 3.1.5, RFC 6121]

5.7.3.13.1.5 Rules for Server Processing of Outbound Subscription Approval

1. [Required] When the contact’s client sends the subscription approval, the contact’s server
SHALL stamp the outbound stanza with the bare JID <localpart@domain> of the contact
and locally deliver or remotely route the stanza to the user. [Section 3.1.5, RFC 6121]

CS: <presence from='john@example1.dod.mil'
id='h4v1c4kj'
to='robert@example2.dod.mil'
type='subscribed'/>

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1955

2. [Required] The contact’s server then SHALL send an updated roster push to all of the

contact’s interested resources, with the ‘subscription’ attribute set to a value of “from”.
[Section 3.1.5, RFC 6121]

3. [Required] The contact’s server SHALL then also send current presence to the user from
each of the contact’s available resources. [Section 3.1.5, RFC 6121]

 NOTE: In order to subscribe to the user’s presence, the contact’s client should then send a
subscription request to the user. It is assumed that the normal, desired end state is a mutual
subscription.

5.7.3.13.1.6 Rules for Server Processing of Inbound Subscription Approval

1. [Required] When the user’s server receives the subscription approval, it SHALL first
check if the contact is in the user’s roster with subscription=‘none’ or subscription=‘from’
and the ‘ask’ flag set to “subscribe” (see Appendix A of RFC 6121). If this check is
successful, then the user’s server SHALL proceed as follows [Section 3.1.6, RFC 6121]:

a. Deliver the inbound subscription approval to all of the user’s interested resources.
This SHALL occur before sending the roster push described in the next step.
[Section 3.1.6, RFC 6121]

 US: <presence from='john@example1.dod.mil'

id='h4v1c4kj'
to='robert@example2.dod.mil'
type='subscribed'/>

b. Initiate a roster push to all of the user’s interested resources, containing an updated

roster item for the contact with the ‘subscription’ attribute set to a value of “to” (if the
subscription state was “None + Pending Out” or “None + Pending Out+In”) or “both”
(if the subscription state was “From + Pending Out”). See Table 5 of Appendix A of
RFC 6121. [Section 3.1.6, RFC 6121]

 US: <iq id='b89c5r7ib576'

to='robert@example2.dod.mil/desktop client'
type='set'>

<query xmlns='jabber:iq:roster'>
<item jid='john@example1.dod.mil'

subscription='to'/>
</query>

</iq>

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1956

c. The user’s server SHALL also deliver the available presence stanza received from

each of the contact’s available resources to each of the user’s available resources.

2. [Required] Otherwise – that is, if the user does not exist, if the contact is not in the user’s
roster, or if the contact is in the user’s roster with a subscription state other than those
described in the foregoing check – then the user’s server SHALL silently ignore the
subscription approval stanza by not delivering it to the user, not modifying the user’s
roster, and not generating a roster push to the user’s interested resources. [Section 3.1.6,
RFC 6121]

 NOTE: If the account has no available resources when the inbound subscribed notification
is received, a server MAY keep a record of the notification (ideally the complete presence
stanza) and then deliver the notification when the account next has an available resource.
This behavior provides more complete signaling to the user regarding the reasons for the
roster change that occurred while the user was offline. [Section 3.1.6, RFC 6121]

5.7.3.13.2 Cancelling a Subscription

5.7.3.13.2.1 Rules for Client Generation of Subscription Cancellation

[Required] A client implementation SHALL be capable of sending a presence stanza of type
“unsubscribed” in order to cancel a subscription that it has previously granted to a user. [Section
3.2.1, RFC 6121]

CC: <presence id='ij5b1v7g'
 to='robert@example2.dod.mil'
 type='unsubscribed'/>

5.7.3.13.2.2 Rules for Server Processing of Outbound Subscription Cancellation

[Required] Upon receiving the outbound subscription cancellation, the contact’s server SHALL
proceed as follows [Section 3.2.2, RFC 6121]:

1. If the user is hosted on the same server as the contact, then the server SHALL adhere to the

rules specified in the next section in processing the subscription cancellation.

2. If the user is hosted on a remote server, the contact’s server SHALL then route the stanza
to that remote domain.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1957

3. As mentioned, before locally delivering or remotely routing the stanza, the contact’s server
SHALL stamp the outbound subscription cancellation with the bare JID
<localpart@domain> of the contact.

CS: <presence from='john@example1.dod.mil'
 id='ij5b1v7g'
 to='robert@example2.dod.mil'
 type='unsubscribed'/>

4. The contact’s server then SHALL send a roster push with the updated roster item to all of
the contact’s interested resources, where the subscription state is now either “none” or “to”.
For added clarification, see Appendix A of RFC 6121.

5. The contact’s server then SHALL send a presence stanza of type “unavailable” from all of
the contact’s online resources to the user.

CS: <presence from='john@example1.dod.mil/desktop client'
 id='i8bsg3h3'
 type='unavailable'/>

5.7.3.13.2.3 Rules for Server Processing of Inbound Subscription Cancellation

[Required] When the user’s server receives the inbound subscription cancellation, it SHALL
first check if the contact is in the user’s roster with subscription=‘to’ or subscription=‘both’ (see
Appendix A of RFC 6121).

1. If this check is successful, the user’s server SHALL [Section 3.2.3, RFC 6121]:

a. Deliver the inbound subscription cancellation to all of the user’s interested resources.
This SHALL occur before sending the roster push described in the next step.

 US: <presence from='john@example1.dod.mil'

 id='ij5b1v7g'
 to='robert@example2.dod.mil'
 type='unsubscribed'/>

b. Initiate a roster push to all of the user’s interested resources, containing an updated
roster item for the contact with the ‘subscription’ attribute set to a value of “none” (if
the subscription state was “To” or “To + Pending In”) or “from” (if the subscription
state was “Both”).

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1958

2. If the check (above) is not successful, that is, if the user does not exist, if the contact is not
in the user’s roster, or if the contact is in the user’s roster with a subscription state other
than those described in the foregoing check, then the user’s server SHALL silently ignore
the stanza by not delivering it to the user, not modifying the user’s roster, and not
generating a roster push to the user’s interested resources. [Section 3.2.3, RFC 6121]

5.7.3.13.3 Unsubscribing

5.7.3.13.3.1 Rules for Client Unsubscribing

[Required] To unsubscribe from a contact’s presence, the client SHALL send a presence stanza
of type “unsubscribe”. [Section 3.3.1, RFC 6121]

UC: <presence id='ul4bs71n'
 to='john@example.dod.mil'
 type='unsubscribe'/>

5.7.3.13.3.2 Rules for Server Processing of Outbound Unsubscribe

[Required] Upon receiving the outbound unsubscribe, the user’s server SHALL proceed as
follows [Section 3.3.2, RFC 6121]:

1. If the contact is hosted on the same server as the user, then the server SHALL adhere to the

rules specified for Server Processing of Inbound Unsubscribe (see below).

2. If the contact is hosted on a remote server, the user’s server SHALL then route the stanza
to that remote domain.

3. The user’s server then SHALL send a roster push with the updated roster item to all the
user’s interested resources, where the subscription state is now either “none” or “from” (see
Appendix A of RFC 6121).

US: <iq id='h37h3u1bv402'
 to='robert@example2.dod.mil/desktop client'
 type='set'>
 <query xmlns='jabber:iq:roster'>
 <item jid='john@example1.dod.mil'
 subscription='none'/>
 </query>
 </iq>

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1959

5.7.3.13.3.3 Rules for Server Processing of Inbound Unsubscribe

[Required] When the contact’s server receives the unsubscribe notification, it SHALL first
check if the user is in the contact’s roster with subscription=‘from’ or subscription=‘both’ (i.e., a
subscription state of “From”, “From + Pending Out”, or “Both”; see Appendix A of RFC 6121).

1. If this check is successful, the contact’s server SHALL [Section 3.3.3, RFC 6121]:

a. Deliver the inbound unsubscribe to all of the contact’s interested resources. This
SHALL occur before sending the roster push described in the next step.

b. Initiate a roster push to all of the contact’s interested resources, containing an updated

roster item for the contact with the ‘subscription’ attribute set to a value of “none” (if
the subscription state was “From” or “From + Pending Out”) or “to” (if the
subscription state was “Both”).

c. Generate an outbound presence stanza of type “unavailable” from each of the

contact’s available resources to the user.

2. If the check (above) is not successful, that is, if the contact does not exist, if the user is not
in the contact’s roster, or if the user is in the contact’s roster with a subscription state other
than those described in the foregoing check, then the contact’s server SHALL silently
ignore the stanza by not delivering it to the contact, not modifying the contact’s roster, and
not generating a roster push to the contact’s interested resources. [Section 3.3.3, RFC
6121]

5.7.3.14 Exchanging Presence Information

In XMPP, presence information is exchanged using <presence/> stanzas as defined in RFC 6121.
A client controlled by a user sends presence information to its home server and the home server
in turn propagates that information to all of the user’s contacts who have a subscription to that
user’s presence. [Section 4.1, RFC 6121]

5.7.3.14.1 Initial Presence

5.7.3.14.1.1 Client Generation of Initial Presence

[Required] After completing the mandatory-to-negotiate stream features and retrieving a roster,
a client implementation SHALL signal its availability for communication by sending initial
presence to its server, i.e., a presence stanza with no ‘to’ address and no ‘type’ attribute.
[Section 4.2.1, RFC 6121]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1960

UC: <presence/>

NOTE: The initial presence stanza may contain the <priority/> element, the <show/> element,
and one or more instances of the <status/> element. [Section 4.2, RFC 6121]

5.7.3.14.1.2 Server Processing of Outbound Initial Presence

1. [Required] Upon receiving initial presence from a client, the user’s server SHALL send
the initial presence stanza from the full JID <user@domain/resource> of the user to all
contacts that are subscribed to the user’s presence. [Section 4.2.2, RFC 6121]

US: <presence from='user@domain/resourecepart'
 to='contact@domain'/>

2. [Required] The user’s server SHALL also broadcast initial presence from the user’s

newly available resource to all of the user’s available resources (including the resource that
generated the presence notification in the first place). [Section 4.2.2, RFC 6121]

3. [Required] In the absence of presence information about the user’s contacts, the user’s
server SHALL also send presence probes to the user’s contacts on behalf of the user (see
Section 5.7.3.14.2, Presence Probes). [Section 4.2.2, RFC 6121]

5.7.3.14.1.3 Server Processing of Inbound Initial Presence

[Required] Upon receiving presence from the user, the contact’s server SHALL deliver the
user’s presence stanza to all of the contact’s available resources. [Section 4.2.3, RFC 6121]

5.7.3.14.1.4 Client Processing of Inbound Initial Presence

[Required] When the contact’s client receives presence from the user, it SHALL proceed as
follows [Section 4.2.4, RFC 6121]:

1. If the user is in the contact’s roster, the client SHALL display the presence information in
an appropriate roster interface.

2. If the user is not in the contact’s roster, the client SHALL ignore the presence information
and not display it to the contact.

5.7.3.14.2 Presence Probes

A presence probe is a request for a contact’s current presence information, sent on behalf of a
user by the user’s server; syntactically it is a presence stanza whose ‘type’ attribute has a value

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1961

of “probe”. In the context of presence subscriptions, the value of the ‘from’ address SHALL be
the bare JID of the subscribed user and the value of the ‘to’ address SHALL be the bare JID of
the contact to which the user is subscribed, since presence subscriptions are based on the bare
JID. [Section 4.3, RFC 6121]

5.7.3.14.2.1 Server Generation of Outbound Presence Probe

1. [Required] To discover the availability of a user’s contact, the user’s server SHALL be
capable of sending a presence probe from the bare JID <user@domain> of the user to the
bare JID <contact@domain> of the contact. [Section 4.3.1, RFC 6121]

US: <presence from='john@example1.dod.mil'
 id='ign291v5'
 to='robert@example2.dod.mil'
 type='probe'/>

2. [Required] The server SHALL NOT send a probe to a contact if the user is not subscribed

to the contact's presence (i.e., if the contact is not in the user’s roster with the ‘subscription’
attribute set to a value of “to” or “both”). [Section 4.3.1, RFC 6121]

 NOTE: The user’s server SHOULD send a presence probe whenever the user starts a new
presence session by sending initial presence. However, the server MAY choose not to send
the probe at that point if it has what it deems to be reliable and up-to-date presence
information about the user’s contacts (e.g., because the user has another available resource
or because the user briefly logged off and on before the new presence session began). In
addition, a server MAY periodically send a presence probe to a contact if it has not
received presence information or other traffic from the contact in some configurable
amount of time; this can help to prevent “ghost” contacts who appear to be online but in
fact are not. [Section 4.3.1, RFC 6121]

 NOTE: Naturally, the user’s server does not need to send a presence probe to a contact if
the contact’s account resides on the same server as the user, since the server possesses the
contact’s information locally. [Section 4.3.1, RFC 6121]

5.7.3.14.2.2 Server Processing of Inbound Presence Probe

[Required] Upon receiving a presence probe to the contact’s bare JID from the user’s server on
behalf of the user, the contact’s server SHALL reply as follows [Section 4.3.2, RFC 6121]:

1. If the contact account does not exist or the user is in the contact’s roster with a subscription
state other than “From”, “From + Pending Out”, or “Both” (as defined under Appendix A
of RFC 6121), then the contact’s server SHALL return a presence stanza of type

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1962

“unsubscribed” in response to the presence probe. Here the ‘from’ address SHALL be the
bare JID of the contact, since specifying a full JID would constitute a presence leak as
described in RFC 6120.

CS: <presence from='mike@example2.dod.mil'
 id='xv291f38'
 to='john@example1.dod.mil'

 type='unsubscribed'/>2.

2. Else, if the contact has no available resources, then the server SHALL reply to the presence
probe by sending to the user a presence stanza of type “unavailable”.

3. Else, if the contact has at least one available resource, then the server SHALL reply to the
presence probe by sending to the user the full XML of the last presence stanza with no ‘to’
attribute received by the server from each of the contact’s available resources. Here the
‘from’ addresses are the full JIDs of each available resource.

CS: <presence from='robert@example2.dod.mil/foo'
 id='hzf1v27k'
 to='john@example1.dod.mil'/>

5.7.3.14.3 Subsequent Presence Broadcasts

[Required] After sending initial presence, a client implementation SHALL be capable of
updating its availability by sending a presence stanza with no ‘to’ address and no ‘type’ attribute.
[Section 4.4.1, RFC 6121]

UC: <presence>
 <show>away</show>
 </presence>

NOTE: This presence update MAY contain the <priority/> element, the <show/> element, and
one or more instances of the <status/> element.

5.7.3.14.3.1 Server Processing of Outbound Presence

1. [Required] Upon receiving a presence stanza expressing updated availability, the user’s
server SHALL broadcast the full XML of that presence stanza to the contacts who meet all
of the following criteria [Section 4.4.2, RFC 6121]:

a. The contact is in the user’s roster with a subscription type of “from” or “both”.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1963

b. The last presence stanza received from the contact during the user’s presence session
was NOT of type “unsubscribe”.

NOTE: As an optimization, if the subscription type is “both”, then the server SHOULD send
subsequent presence notifications to a contact only if the contact is online according to the user’s
server. [Section 4.4.2, RFC 6121]

2. [Required] The user’s server SHALL also send the presence stanza to all of the user’s
available resources (including the resource that generated the presence notification in the
first place). [Section 4.4.2, RFC 6121]

5.7.3.14.3.2 Server Processing of Inbound Presence

[Required] Upon receiving presence from the user, the contact’s server SHALL deliver the
user’s presence stanza to all of the contact’s available resources. [Section 4.4.3, RFC 6121]

5.7.3.14.3.3 Client Processing of Inbound Presence

[Required] From the perspective of the contact’s client, there is no significant difference
between initial presence broadcast and subsequent presence broadcast, so the contact’s client
SHALL follow the rules for processing of inbound presence defined under Section 5.7.3.14.1.4,
Client Processing of Inbound Initial Presence. [Section 4.4.4, RFC 6121]

5.7.3.14.4 Unavailable Presence

5.7.3.14.4.1 Client Generation of Unavailable Presence

[Required] Before ending its presence session with a server, the user’s client SHALL gracefully
become unavailable by sending unavailable presence, i.e., a presence stanza that possesses no
‘to’ attribute and that possesses a ‘type’ attribute whose value is “unavailable”. The unavailable
presence stanza SHALL NOT contain the <priority/> element or the <show/> element, since
these elements apply only to available resources. [Section 4.5.1, RFC 6121]

UC: <presence type='unavailable'/>

NOTE: Optionally, the unavailable presence stanza MAY contain one or more <status/>
elements specifying the reason why the user is no longer available.

5.7.3.14.4.2 Server Processing of Outbound Unavailable Presence

1. [Required] The user’s server SHALL NOT depend on receiving unavailable presence
from an available resource, since the resource can become unavailable ungracefully (e.g.,

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1964

the resource can be timed out by the server because of inactivity). [Section 4.5.2, RFC
6121]

2. [Required] If an available resource becomes unavailable for any reason (either gracefully
or ungracefully), the user’s server SHALL broadcast unavailable presence to all contacts
that meet all of the following criteria [Section 4.5.2, RFC 6121]:

a. The contact is in the user’s roster with a subscription type of “from” or “both”.

b. The last presence stanza received from the contact during the user’s presence session

was not of type “error” or “unsubscribe”.

3. [Required] If the unavailable notification was gracefully received from the client, then the
server SHALL broadcast the full XML of the presence stanza. [Section 4.5.2,
RFC 6121]

4. [Required] The user’s server SHALL also send the unavailable notification to all of the
user’s available resources (including the resource that generated the presence notification
in the first place). [Section 4.5.2, RFC 6121]

5. [Required] If the server detects that the user has gone offline ungracefully, then the server
SHALL generate the unavailable presence broadcast on the user’s behalf. [Section 4.5.2,
RFC 6121]

5.7.3.14.4.3 Server Processing of Inbound Unavailable Presence

[Required] Upon receiving an unavailable notification from the user, the contact’s server
SHALL deliver the user’s presence stanza to all of the contact’s available resources. [Section
4.5.3, RFC 6121]

5.7.3.14.4.4 Client Processing of Inbound Unavailable Presence

[Required] From the perspective of the contact’s client, there is no significant difference
between initial presence broadcast and unavailable presence broadcast, so the contact’s client
SHALL follow the rules for processing of inbound presence defined under Section 5.7.3.14.1.4,
Client Processing of Inbound Initial Presence. [Section 4.5.4, RFC 6121]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1965

5.7.3.14.5 Presence Syntax

5.7.3.14.5.1 Show Element

[Required] To specify a particular availability sub-state, a client implementation SHALL
support the <show/> element within a presence stanza. A presence stanza SHALL NOT contain
more than one <show/> element. The XML character data of the <show/> element is not human-
readable. The XML character data SHALL be one of the following [Section 4.7.2.1,
RFC 6121]:

• away – The entity or resource is temporarily away.
• chat – The entity or resource is actively interested in chatting.
• dnd – The entity or resource is busy (dnd = “Do Not Disturb”).
• xa – The entity or resource is away for an extended period (xa = “eXtended Away”).

NOTE: If no <show/> element is provided, the entity is assumed to be online and available.
[Section 4.7.2.1, RFC 6121]

NOTE: While support for this feature is required, the use of this feature is optional.

5.7.3.14.5.2 Status Element

To convey human-readable XML character data specifying a natural-language description of an
entity’s availability, the client SHALL support the <status/> element within a presence stanza. It
is normally used in conjunction with the show element to provide a detailed description of an
availability state (e.g., “In a meeting”) when the presence stanza has no ‘type’ attribute. There
are no attributes defined for the <status/> element, with the exception of the ‘xml:lang’ attribute.
[Section 4.7.2.2, RFC 6121]

<presence from='john.smith@chat1.dod.mil/office'
xml:lang='en'>

<show>dnd</show>
<status>In a meeting</status>

</presence>

NOTE: A presence stanza of type “unavailable” MAY also include a <status/> element to
provide detailed information about why the entity is going offline.

NOTE: While support for this feature is required, the use of this feature is optional.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1966

5.7.3.14.5.3 Priority Element

NOTE: The OPTIONAL <priority/> element contains non-human-readable XML character data
that specifies the priority level of the resource. The value SHALL be an integer between -128
and +127. [Section 4.7.2.3, RFC 6121]

<presence xml:lang='en'>
<show>dnd</show>
<status>In Meeting</status>

<priority>1</priority>
</presence>

If no priority is provided, the processing server or client SHOULD consider the priority to be
zero (“0”).

5.7.3.15 Exchanging Messages

After a client has established and secured a stream with its home server, the next step, as
discussed above, is to bind a specific resource to the stream. Once the client has completed the
resource binding step, the client may generate and exchange an unlimited number of stanzas.
One such stanza that can be exchanged is <message/>. As discussed in RFC 6121, a <message/>
stanza is used to “push” information to another entity.

5.7.3.15.1 One-to-One Chat Sessions

One-to-One Chat permits a user to engage in a near real-time, text-based conversation with
another user. In XMPP, this text-based conversation is enabled through the exchange of
<message/> stanzas. As discussed in Section 5 of RFC 6121, the two parties will typically
exchange a number of messages in relatively rapid succession within a relatively brief period.
[Section 5.1, RFC 6121]

1. [Required] When a user’s client is engaged in a chat session with a contact, the user's

client SHALL send a message of type “chat” and the contact’s client SHALL preserve that
message type in subsequent replies. [Section 5.1, RFC 6121]

2. [Required] The user’s client SHALL be capable of including a <thread/> element with its
initial message, which the contact's client SHALL also preserve during the life of the chat
session. The primary use of the XMPP <thread/> element is to uniquely identify a
conversation thread or “chat session” between two entities instantiated by <message/>
stanzas of type ‘chat’. [Section 5.1, RFC 6121]

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1967

3. [Required] The user’s client SHALL address the initial message in a chat session to the
bare JID of the contact (i.e., <contact@domain>). Until and unless the user’s client
receives a reply from the contact, it SHALL continue sending any further messages to the
contact’s bare JID. Once the user’s client receives a reply from the contact’s full JID, it
SHALL address its subsequent messages to the contact’s full JID as provided in the ‘from’
address of the contact’s replies. [Section 5.1, RFC 6121]

4. [Required] The contact’s client SHALL address its subsequent replies to the user’s full
JID <user@domain/resource> as provided in the ‘from’ address of the initial message.
[Section 5.1, RFC 6121]

5.7.3.15.2 Message Stanza Syntax

5.7.3.15.2.1 To Attribute

[Required] An instant messaging client SHALL specify the intended recipient for a message
stanza by providing the JID of the intended recipient in the ‘to’ attribute of the <message/>
stanza. [Section 5.2.1, RFC 6121]

5.7.3.15.2.2 Type Attribute

1. [Required] An instant messaging client SHALL support all of the following message
types [Section 5.2.2, RFC 6121]:

a. chat – The value “chat” indicates that the message is sent in the context of a one-to-
one chat session. Typically, a receiving client will present/display messages of type
“chat” in an interface that enables one-to-one chat between the two parties, including
an appropriate conversation history.

b. error – The value “error” indicates that the message is generated by an entity that

experienced an error in processing a message received from another entity.
 NOTE: A client that receives a message of type “error” SHOULD present an

appropriate interface informing the sender of the nature of the error.

c. groupchat – The value “groupchat” indicates that the message is sent in the context of

a multiuser chat environment. Typically, a receiving client will present a message of
type “groupchat” in an interface that enables many-to-many chat between the parties.

d. normal – The value “normal” indicates that the message is a standalone message that

is sent outside the context of a one-to-one conversation or groupchat, and to which it
is expected that the recipient will reply. Typically, a receiving client will present a

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1968

message of type “normal” in an interface that enables the recipient to reply, but
without a conversation history. The default value of the ‘type’ attribute is "normal".

 NOTE: Support for the following message type is defined as recommended.

e. headline – The value “headline” indicates that the message provides an alert, a

notification, or other information to which no reply is expected (e.g., news headlines,
sports updates, near-real-time market data, and syndicated content). Because no reply
to the message is expected, typically a receiving client will present a message of type
“headline” in an interface that appropriately differentiates the message from
standalone messages, chat messages, or groupchat messages (e.g., by not providing
the recipient with the ability to reply).

2. [Required] If an application receives a message with no ‘type’ attribute or the application

does not understand the value of the ‘type’ attribute provided, it SHALL consider the
message to be of type “normal” (i.e., “normal” is the default). [Section 5.2.2,
RFC 6121]

5.7.3.15.2.3 Body Element

[Required] A client SHALL be capable of populating a <message/> stanza with the <body/>
element. The <body/> element contains human-readable XML character data that specifies the
textual content of the message.

NOTE: While support for this feature is required, the use of this feature is optional. This child
element is normally included in a message stanza. [Section 5.2.3, RFC 6121]

NOTE: There are no attributes defined for the <body/> element, with the exception of the
‘xml:lang’ attribute. Multiple instances of the <body/> element MAY be included in a message
stanza, but only if each instance possesses an ‘xml:lang’ attribute with a distinct language value.
[Section 5.2.3, RFC 6121]

5.7.3.16 Conformance Requirements in RFC 6120 and RFC 6121

Section 15 of RFC 6120 and Section 13 of RFC 6121 describe a protocol feature set that
summarizes the conformance requirements associated with these two specifications. In the event
of a discrepancy between Section 15 of RFC 6121 or Section 13 of RFC 6121 and this section of
the UCR, the explicit requirements defined in this section of the UCR take precedence.

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1969

5.7.3.17 XMPP Extensions

The documents referenced in this section represent extensions to the XMPP baseline
specifications (i.e., RFC 6120 and RFC 6121). Through an open standards process, the XMPP
Standards Foundation (XSF) develops extensions to XMPP. These extensions are published by
the XSF as XMPP Extension Protocols (XEPs) series documents at http://xmpp.org/. While the
majority of XMPP extensions are defined in the XEP series documents, other important related
specifications/extensions are defined by the XMPP Working Group at the IETF. These XMPP
extensions address functionality or enable innovative features that are not addressed in the core
XMPP specifications.

The protocol specifications referenced within Table 5.7.3-2, DoD XMPP Protocol Suite,
constitute a mandatory protocol suite (i.e., for the purpose of compliance testing and
certification; support for these extensions is defined as REQUIRED). Regarding the
specifications defined in Table 5.7.3-2, DoD XMPP Protocol Suite, client and server
implementations SHALL comply with all requirements defined as “MUST”, “SHALL”,
“REQUIRED”, “MUST NOT”, “SHALL NOT”. It is also expected that vendors will likewise
implement requirements defined as “SHOULD” or “SHOULD NOT” except where there may
exist valid reasons in particular circumstances to ignore a particular requirement.

NOTE: Some of the protocol specifications referenced in Table 5.7.3-2, DoD XMPP Protocol
Suite, have their own dependencies.

Table 5.7.3-2. DoD XMPP Protocol Suite

REFERENCE XMPP
SERVER

XMPP
CLIENT

XMPP
GATEWAYS

XEP-0045: Multi-User Chat ✓ ✓ Conditional

XEP-0030: Service Discovery ✓ ✓ ✓
XEP-0085: Chat State Notifications N/A ✓ ✓
RFC 4422 – Appendix A SASL
EXTERNAL Mechanism* ✓ ✓

XEP-0004: Data Forms ✓ ✓ Conditional

XEP-0077: In-Band Registration** ✓ ✓ Conditional
XEP-0082: XMPP Date and Time
Profiles ✓ ✓ Conditional
XEP-0068: Field Standardization for
Data Forms ✓ ✓ Conditional
* See XEP-0178: Best Practices for Use of SASL EXTERNAL with Certificates
** The use of In-Band Registration is restricted to the use case where a user is attempting to register with a

moderated room in the context of a Multi-User Chat service.

http://xmpp.org/�
http://xmpp.org/extensions/xep-0045.html�
http://xmpp.org/extensions/xep-0030.html�
http://xmpp.org/extensions/xep-0085.html�
http://xmpp.org/extensions/xep-0191.html�

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1970

5.7.3.17.1 Elevated/Clarified Requirements

To better enable multivendor interoperability, to facilitate full feature functionality, and to
address specific security requirements, some of the requirements defined as “SHOULD”,
“RECOMMENDED”, “SHOULD NOT”, “NOT RECOMMENDED”, “MAY”, or
“OPTIONAL” in the above XMPP extensions have been redefined in this specification to reflect
requirement levels associated with the following terminology: “MUST”, “SHALL”,
“REQUIRED”, “MUST NOT”, or “SHALL NOT”. These elevated requirements are explicitly
defined in Table 5.7.3-3. Also, where there may be some degree of ambiguity in a commercial
standard regarding whether or not support for a particular capability or feature is REQUIRED,
Table 5.7.3-3, Elevated/Clarified Requirements, adds explicit clarification.

Table 5.7.3-3. Elevated/Clarified Requirements

REFERENCE
DOCUMENT

REFERENCE
DOCUMENT

SECTION

REQUIREMENT*

XEP-0045 Multi-User Chat 5.1 Implementations SHALL provide support for the
‘Visitor’ role.

XEP-0045 Multi-User Chat 5.2 Implementations SHALL provide support for the
‘Admin’, ‘Member’, and ‘Outcast’ affiliation.

XEP-0045 Multi-User Chat
6.1, 6.2, and
6.3

Implementations SHALL support the following
capabilities (as defined in Sections 6.1, 6.2, and 6.3):
1. Discovering Component Support for MUC
2. Discovering Rooms
3. Querying for Room Information

XEP-0045 Multi-User Chat
3, 4.2, 7.1.5,
7.1.6, 7.1.7,
and 7.1.8

Implementations SHALL support the following room
types:
1. Both Persistent or Temporary
2. Public
3. Non-Anonymous
4. Password-Protected and Unsecured
5. Both Members-Only and Open
6. Moderated and Un-moderated

XEP-0045 Multi-User Chat 7.1.15

Implementations SHALL support the sending of
Discussion History to a new occupant (as defined in
Sections 7.1.15). NOTE: “Whether such history is
sent, and how many messages comprise the history,
shall be determined by the chat service implementation
or specific deployment.”

http://xmpp.org/extensions/xep-0045.html�
http://xmpp.org/extensions/xep-0045.html�
http://xmpp.org/extensions/xep-0045.html�
http://xmpp.org/extensions/xep-0045.html�
http://xmpp.org/extensions/xep-0045.html�

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1971

REFERENCE
DOCUMENT

REFERENCE
DOCUMENT

SECTION

REQUIREMENT*

XEP-0045 Multi-User Chat

7.1, 7.2, 7.4,
7.5, 7.6, 7.8,
7.9, 7.10, and
7.13

Implementations SHALL support a user’s ability to:
1. Enter a Room
2. Exit a Room
3. Change Availability Status
4. Invite Another User to a Room
5. Convert a One-to-One Chat into a Multi-User

Conference
6. Send a Private Message
7. Send a Message to All Occupants
8. Register with a Room
9. Request Voice

XEP-0045 Multi-User Chat 8.1 through 8.6

Implementations SHALL support the ability of a
Moderator to perform the following privileges:
1. Modify the subject
2. Kick a participant or visitor from the room
3. Grant or revoke voice in a moderated room
4. Modify the list of occupants who have voice in a

moderated room

XEP-0045 Multi-User Chat 9.1 through 9.9

Implementations SHALL support the ability of an
Admin to perform the following privileges:
1. Ban a user from the room
2. Modify the list of users who are banned from the

room
3. Grant or revoke membership
4. Modify the member list
5. Grant or revoke moderator privileges
6. Modify the list of moderators
7. Approve Registration Requests

XEP-0045 Multi-User Chat 10.1 and 10.2

Implementations SHALL support the ability of an
Owner to create a room and to change defining room
configuration settings (as defined in Section 10.1 and
10.2)

XEP-0045 Multi-User Chat
10.3 through
10.9

Implementations SHALL support the ability of an
Owner to perform the following privileges (as defined
in Section 10):
1. Grant or revoke ownership privileges
2. Modify the owner list
3. Grant or revoke administrative privileges
4. Modify the Admin list
5. Destroy a room

http://xmpp.org/extensions/xep-0045.html�
http://xmpp.org/extensions/xep-0045.html�
http://xmpp.org/extensions/xep-0045.html�
http://xmpp.org/extensions/xep-0045.html�
http://xmpp.org/extensions/xep-0045.html�

DoD UCR 2008, Change 3
Section 5.7 – Near-Real-Time, Text-Based Messaging Products

1972

REFERENCE
DOCUMENT

REFERENCE
DOCUMENT

SECTION

REQUIREMENT*

XEP-0030 Service
Discovery

4 and 3

Implementation SHALL provide support for:
1. Discovering information about an entity as defined

in Section 3 [XEP-030]
2. Discovering the items associated with an entity as

defined in Section 4 [XEP-030]

NOTE: Table 5.7.3-3, Elevated/Clarified Requirements, ONLY addresses functionality where
the associated requirement level has been elevated (e.g., from a “SHOULD” to a “SHALL”) or
where there was a need to explicitly clarify whether support for a particular capability or feature
is REQUIRED.

5.7.3.18 XML Usage

[Required] XMPP client and server implementations SHALL comply with the mandatory
requirements defined in Section 11 of RFC 6120.

5.7.3.19 DiffServ Code Point (DSCP) Requirements

[Required] XMPP client and server implementations shall class mark XMPP traffic consistent
with the code point values defined for ROUTINE Low-Latency Data as per Table 5.3.3-1 (DSCP
Assignments).

http://xmpp.org/extensions/xep-0030.html�
http://xmpp.org/extensions/xep-0030.html�

	5.7 Near-Real-Time, Text-Based Messaging Products
	5.7.1 Introduction
	5.7.2 Overview
	5.7.3 XMPP Requirements
	5.7.3.1 Introduction
	5.7.3.2 Scope and Acknowledgement
	5.7.3.3 XMPP Solution Framework
	5.7.3.4 Terminology
	5.7.3.5 Functional Summary
	5.7.3.5.1 Client-to-Server Connections
	5.7.3.5.2 Server-to-Server Connections

	5.7.3.6 XMPP Addressing
	5.7.3.7 XML Streams
	5.7.3.7.1 TCP Binding
	5.7.3.7.1.1 Hostname Resolution
	5.7.3.7.1.2 Standard, Default Port Values
	5.7.3.7.1.3 Fallback Process

	5.7.3.7.2 Stream Negotiation Overview
	5.7.3.7.3 Stream Features
	5.7.3.7.4 Stream Restarts
	5.7.3.7.5 Continuation and Completion of Stream Negotiation
	5.7.3.7.6 Directionality
	5.7.3.7.7 Closing a Stream
	5.7.3.7.7.1 Closing a Stream without a Stream Error

	5.7.3.7.8 Stream Attributes
	5.7.3.7.8.1 Initial Streams
	5.7.3.7.8.2 Response Streams

	5.7.3.7.9 Namespaces
	5.7.3.7.9.1 Streams Namespace
	5.7.3.7.9.2 Content Namespace

	5.7.3.7.10 Stream Errors
	5.7.3.7.10.1 Stream Error Syntax and Defined Stream Error Conditions

	5.7.3.8 TLS and STARTTLS Negotiation
	5.7.3.8.1 STARTTLS Process
	5.7.3.8.2 Initiation of STARTTLS Negotiation
	5.7.3.8.3 STARTTLS Negotiation Fails
	5.7.3.8.4 TLS Negotiation
	5.7.3.8.5 TLS Success
	5.7.3.8.6 TLS Failure
	5.7.3.8.7 Order of TLS and SASL Negotiation
	5.7.3.8.8 STARTTLS Failure Case

	5.7.3.9 Authentication and SASL Negotiation
	5.7.3.9.1 Client-to-Server Streams
	5.7.3.9.2 Server-to-Server Streams
	5.7.3.9.3 SASL Failure
	5.7.3.9.4 SASL Errors

	5.7.3.10 Resource Binding
	5.7.3.10.1 Overview
	5.7.3.10.2 Resource Binding Process
	5.7.3.10.2.1 Mandatory-to-Negotiate
	5.7.3.10.2.2 Advertising Support
	5.7.3.10.2.1 Server-Generated Resource Identifier

	5.7.3.10.3 Error Cases Associated with Server-Generated Resource Identifiers

	5.7.3.11 XML Stanzas
	5.7.3.11.1 Common Attributes
	5.7.3.11.1.1 ‘to’ Attribute
	5.7.3.11.1.2 ‘from’ Attribute
	5.7.3.11.1.3 ‘id’ Attribute
	5.7.3.11.1.4 ‘type’ Attribute
	5.7.3.11.1.5 ‘xml:lang’ Attribute

	5.7.3.11.2 Basic Semantics
	5.7.3.11.2.1 Message Semantics
	5.7.3.11.2.2 Presence Semantics
	5.7.3.11.2.3 IQ Semantics

	5.7.3.11.3 Stanza Errors
	5.7.3.11.4 Server Rules for Processing XML Stanzas
	5.7.3.11.4.1 Rules for Processing XML Stanzas to Remote Domains
	5.7.3.11.4.1.1 Server-to-Server Stream Already Exists
	5.7.3.11.4.1.2 No Server-to-Server Stream Currently Exists
	5.7.3.11.4.1.3 Error Handling

	5.7.3.11.4. 2 Rules for Processing XML Stanzas to Local Domain
	5.7.3.11.4.2.1 No Such User
	5.7.3.11.4.2.2 Bare JID
	5.7.3.11.4.2.3 Full JID

	5.7.3.12 Roster Management
	5.7.3.12.1 Roster-Related Elements and Attributes
	5.7.3.12.2 Roster-Related Methods
	5.7.3.12.3 Retrieving the Roster on Login
	5.7.3.12.4 Adding a Roster Item
	5.7.3.12.5 Updating a Roster Item
	5.7.3.12.6 Deleting a Roster Item

	5.7.3.13 Presence Subscription Management
	5.7.3.13.1 Subscription Requests
	5.7.3.13.1.1 Rules for Client Generation of Outbound Subscription Requests
	5.7.3.13.1.2 Rules for Server Processing of Outbound Subscription Requests
	5.7.3.13.1.3 Rules for Server Processing of Inbound Subscription Requests
	5.7.3.13.1.4 Rules for Client Processing of Inbound Subscription Requests
	5.7.3.13.1.5 Rules for Server Processing of Outbound Subscription Approval
	5.7.3.13.1.6 Rules for Server Processing of Inbound Subscription Approval

	5.7.3.13.2 Cancelling a Subscription
	5.7.3.13.2.1 Rules for Client Generation of Subscription Cancellation
	5.7.3.13.2.2 Rules for Server Processing of Outbound Subscription Cancellation
	5.7.3.13.2.3 Rules for Server Processing of Inbound Subscription Cancellation

	5.7.3.13.3 Unsubscribing
	5.7.3.13.3.1 Rules for Client Unsubscribing
	5.7.3.13.3.2 Rules for Server Processing of Outbound Unsubscribe
	5.7.3.13.3.3 Rules for Server Processing of Inbound Unsubscribe

	5.7.3.14 Exchanging Presence Information
	5.7.3.14.1 Initial Presence
	5.7.3.14.1.1 Client Generation of Initial Presence
	5.7.3.14.1.2 Server Processing of Outbound Initial Presence
	5.7.3.14.1.3 Server Processing of Inbound Initial Presence
	5.7.3.14.1.4 Client Processing of Inbound Initial Presence

	5.7.3.14.2 Presence Probes
	5.7.3.14.2.1 Server Generation of Outbound Presence Probe
	5.7.3.14.2.2 Server Processing of Inbound Presence Probe

	5.7.3.14.3 Subsequent Presence Broadcasts
	5.7.3.14.3.1 Server Processing of Outbound Presence
	5.7.3.14.3.2 Server Processing of Inbound Presence
	5.7.3.14.3.3 Client Processing of Inbound Presence

	5.7.3.14.4 Unavailable Presence
	5.7.3.14.4.1 Client Generation of Unavailable Presence
	5.7.3.14.4.2 Server Processing of Outbound Unavailable Presence
	5.7.3.14.4.3 Server Processing of Inbound Unavailable Presence
	5.7.3.14.4.4 Client Processing of Inbound Unavailable Presence

	5.7.3.14.5 Presence Syntax
	5.7.3.14.5.1 Show Element
	5.7.3.14.5.2 Status Element
	5.7.3.14.5.3 Priority Element

	5.7.3.15 Exchanging Messages
	5.7.3.15.1 One-to-One Chat Sessions
	5.7.3.15.2 Message Stanza Syntax
	5.7.3.15.2.1 To Attribute
	5.7.3.15.2.2 Type Attribute
	5.7.3.15.2.3 Body Element

	5.7.3.16 Conformance Requirements in RFC 6120 and RFC 6121
	5.7.3.17 XMPP Extensions
	5.7.3.17.1 Elevated/Clarified Requirements

	5.7.3.18 XML Usage
	5.7.3.19 DiffServ Code Point (DSCP) Requirements

